AIMS Mathematics, 2020, 5(1): 300-310. doi: 10.3934/math.2020020.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Non-extensive minimal entropy martingale measures and semi-Markov regime switching interest rate modeling

1 Department of Mathematical Sciences, Institute of Business Administration Karachi, Pakistan
2 University of Bucharest, Romania
3 “Gh. Mihoc-C. Iacob” Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy
4 National Institute for Economic Research “Costin C. Kiritescu”, Bucharest, Romania
5 Bucharest University of Economic Studies, Bucharest, Romania

A minimal entropy martingale measure problem is studied to investigate risk-neutral densities and interest rate modelling. Hunt & Devolder focused on the method of Shannon minimal entropy martingale measure to select the best measure among all the equivalent martingale measures and, proposed a generalization of the Ho & Lee model in the semi-Markov regime-switching framework [1]. We formulate and solve the optimization problem of Hunt & Devolder for deriving risk-neutral densities using a new non-extensive entropy measure [2]. We use the Lambert function and a new type of approach to obtain results without depending on stochastic calculus techniques.
  Figure/Table
  Supplementary
  Article Metrics

Keywords entropy; minimal entropy martingale; interest rate models; semi-Markov processes; risk neutral density

Citation: Muhammad Sheraz, Vasile Preda, Silvia Dedu. Non-extensive minimal entropy martingale measures and semi-Markov regime switching interest rate modeling. AIMS Mathematics, 2020, 5(1): 300-310. doi: 10.3934/math.2020020

References

  • 1. J. Hunt, P. Devolder, semi-Markov regime switching interest rate models and minimal entropy measure, Phys. A Stat. Mech. Appl., 390 (2011), 3767-3778.    
  • 2. F. Shafee, Lambert function and a new non-extensive form of entropy, J. App. Math., 72 (2007), 785-800.
  • 3. C. E. Shannon, W. Weaver, The Mathematical Theory of Communication, Urbana: The University of Illinois Press, 1998.
  • 4. G. Kaniadakis, Non-linear kinetics underlying generalized statistics, Phys. A Stat. Mech. Appl., 296 (2001), 405-425.    
  • 5. A. Renyi, On measures of entropy and information, In: Proceed. 4th. Berkely. Symp. Math Stat. Prob., 1 (1961), 547-561.
  • 6. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52 (1988), 479-487.    
  • 7. M. R. Ubriaco, Entropies based on fractional calculus, Phys. Lett. A Stat. Mech. Appl., 373 (2009), 2516-2519.
  • 8. T. S. Y. Ho, S. B. Lee, Term structure movements and pricing interest rate contingent claims, J. Financ., 41 (1986), 1011-1029.    
  • 9. J. C. Cox, J. E. Ingersoll, S. A. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-408.    
  • 10. J. Hull, A. White, Pricing interest-rate derivative securities, Rev. Financ. Stud., 3 (1990), 573-592.    
  • 11. O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ., 5 (1977), 177-188.    
  • 12. P. J. Hunt, J. E. Kennedy, Financial Derivatives in Theory and Practice, John Wiley and Sons, 2004.
  • 13. G. C. Philippatos, C. J. Wilson, Entropy, market risks and the selection of efficient portfolios, Appl. Econ., 4 (1972), 209-220.    
  • 14. L. Gulko, The entropy theory of stock option pricing, Int. J. Theo. Appl. Financ., 2 (1999), 331-355.    
  • 15. B. Trivellato, Deformed exponentials and applications to finance, Entropy, 15 (2013), 3471-3489.    
  • 16. B. Trivellato, The minimal k-entropy martingale measure, Int. J. Theo. Appl. Financ., 15 (2012), 1250038.
  • 17. V. Preda, S. Dedu, M. Sheraz, New measure selection for Hunt and Devolder semi-Markov regime switching interest rate model, Phys. A Stat. Mech. Appl., 407 (2014), 350-359.    
  • 18. V. Preda, S. Dedu, C. Gheorghe, New classes of Lorenz curves by maximizing Tsallis entropy under mean and Gini equality and inequality constraints, Phys. A Stat. Mech. Appl., 436 (2015), 925-932.
  • 19. V. Preda, M. Sheraz, Risk-neutral densities in entropy theory of stock options using Lambert function and a new approach, P. Romanian Acad. A, 4 (2015), 20-27.
  • 20. M. Sheraz, V. Preda, S. Dedu, Tsallis and Kaniadakis entropy measures for risk neutral densities, International Conference on Computer Aided Systems Theory, Springer, 2017.
  • 21. T. Björk, Arbitrage Theory in Continuous Time, New York: Oxford University Press, 2009.
  • 22. J. C. Cox, S. A. Ross, M. Rubinstein, Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), 229-263.    
  • 23. S. R. Valluri, R. M. Corrless, D. J. Jeffrey, Some applications of Lambert W function to physics, Canadian J. Phys., 78 (2000), 823-831.
  • 24. J. Borwein, R. Choksi, P. Maréchal, Probability distributions of assets inferred from option prices via the principle of maximum entropy, SIAM J. Optimiz., 14 (2003), 464-478.    
  • 25. D. G. Luenberger, Optimization by Vector Space Methods, New York: Wiely, 1969.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved