AIMS Mathematics, 2020, 5(1): 286-299. doi: 10.3934/math.2020019

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On k-type pseudo null slant helices due to the Bishop frame in Minkowski 3-space E13

1 Department of Mathematics, Kırklareli University, 39100, Kırklareli, Turkey
2 Department of Mathematics, Muş Alparslan University, 49250, Muş, Turkey

In this study, we examine k-type pseudo null slant helices due to the Bishop frame, where k∈{0,1,2}. There are two different cases of the Bishop frame of a pseudo null curve related to the Bishop curvatures. Based on these cases, we present that every pseudo null curve is a k-type pseudo null curve according to the Bishop frame in Minkowski 3-space E13. Then we obtain the axes of k-type pseudo null slant helices, and determine their causal characters.
  Figure/Table
  Supplementary
  Article Metrics

References

1. S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math., 28 (2004), 153-164.

2. J. Walrave, Curves and surfaces in Minkowski space, Ph.D. thesis of Leuven University, 1995.

3. L. Kula, Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comput., 169 (2005), 600-607.

4. L. Kula, N. Ekmekçi, Y. Yayli, et al. Characterizations of slant helices in Euclidean 3-space, Turk. J. Math., 34 (2010), 261-274.

5. T. Körpinar, R. C. Demirkol, Z. Körpinar, Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space, Int. J. Geom. Methods M., 16 (2019), 1950117.

6. M. Ergüt, H. B. Öztekin, S. Aykurt, Non-null k-slant helices and their spherical indicatrices in Minkowski 3-space, J. Adv. Res. Dyn. Control Syst., 2 (2010), 1-12

7. A. Ali, R. Lopez, M. Turgut, k-type partially null and pseudo null slant helices in Minkowski 4-space, Math. Commun., 17 (2012), 93-103.

8. E. Nešovic, U. Öztürk, E. B. K. Öztürk, On type pseudo null Darboux helices in Minkowski 3-space, J. Math. Anal. Appl., 439 (2016), 690-700.    

9. E. Nešovic, E. B. K. Öztürk, U. Öztürk, On type null Cartan slant helices in Minkowski 3-space, Math. Methods Appl. Sci., 41 (2018), 7583-7598.    

10. U. Öztürk, E. Nešovic, On pseudo null and null Cartan Darboux helices in Minkowski 3-space, Kuwait J. Sci., 43 (2016), 64-82.

11. J. Qian, Y. H. Kim, Null helix and type null slant helices in E4, Rev. Un. Mat. Argentina, 57 (2016), 71-83.

12. M. Grbovic, E. Nešovic, On generalized Bishop frame of null Cartan curve in Minkowski 3-space, Kragujevac J. Math., 43 (2019), 559-573.

13. L. R. Bishop, There is more than one way to frame a curve, Am. Math. Mon., 82 (1975), 246-251.    

14. M. Erdoğdu, Parallel frame of non lightlike curves in Minkowski space time, Int. J. Geom. Methods M., 12 (2015), 1550109.

15. M. Grbovic, E. Nešovic, On the Bishop frames of pseudo null and null Cartan curves in Minkowski 3-space, J. Math. Anal. Appl., 461 (2018), 219-233.    

16. F. Özçelik, Z. Bozkurt, İ. Gök, et al. Parallel transport frame in 4-dimensional Euclidean space, Casp. J. Math. Sci., 3 (2014), 91-102.

17. M. Özdemir, A. A. Ergin, Parallel frame of non-lightlike curves, Missouri J. Math. Sci., 20 (2008), 127-137.

18. T. Körpinar, R. C. Demirkol, Z. Körpinar, Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations, Eur. Phys. J. D, 73 (2019), 203.

19. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, London: Academic press Inc, 1983.

20. R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 3 (2010), 67-101.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved