Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Ostrowski type inequalities via new fractional conformable integrals

1 Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey
2 Department of Mathematics, Faculty of Arts and Sciences, Ağrı İbrahim Çeçen University, Ağrı, Turkey
3 Department of Mathematics and Computer Science, Cankaya University, 06530, Ankara, Turkey

Special Issues: Recent Advances in Fractional Calculus with Real World Applications

In this present study, firstly, some necessary definitions and some results related to Riemann-Liouville fractional and new fractional conformable integral operators defined by Jarad et al. [13] are given. As a second, a new identity has been proved. By using this identity, new Ostrowski type inequalities has obtained involving fractional conformable integral operators. Also, some new inequalities has established for AG-convex functions via fractional conformable integrals in this study. Relevant connections of the results presented here with those earlier ones are also pointed out.
  Figure/Table
  Supplementary
  Article Metrics

Keywords s-convex function; Hermite-Hadamard inequality; fractional conformable integral

Citation: Erhan Set, Ahmet Ocak Akdemir, Abdurrahman Gözpınar, Fahd Jarad. Ostrowski type inequalities via new fractional conformable integrals. AIMS Mathematics, 2019, 4(6): 1684-1697. doi: 10.3934/math.2019.6.1684

References

  • 1. M. Alomari, M. Darus, S. S. Dragomir, et al. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071-1076.    
  • 2. G. A. Anastassiou, Ostrowski type inequalities, Proc. Amer. Math. Soc., 123 (1995), 3775-3781.    
  • 3. G. Anastassiou, M. R. Hooshmandasl, A. Ghasemi, et al. Montogomery identities for fractional integrals and related fractional inequalities, Journal of Inequalities in Pure and Applied Mathematics, 10 (2009), 1-6.
  • 4. G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308.    
  • 5. S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 10 (2009), 86.
  • 6. Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlin. Sci. Num., 9 (2010), 493-497.
  • 7. Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (2010), 51-58.    
  • 8. Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonl. Sci. Lett. A, 1 (2010), 155-160.
  • 9. Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality usin Riemann-Liouville fractional integrals, Bulletin of Mathematical Analysis and Applications, 2 (2010), 93-99.
  • 10. S. S. Dragomir, Ostrowski type inequalities for lebesque integral: A survey of recent results, Australian Journal of Mathematical Analysis and Applications, 14 (2017), 1-287.
  • 11. S. S. Dragomir, General Lebesgue integral inequalities of Jensen and Ostrowski type for differentiable functions whose derivatives in absolute value are h-convex and applications, Annales Universitatis Mariae Curie-Sklodowska, Sectio A-Mathematica, 69 (2015), 17-45.    
  • 12. A. Gözpınar, Some Hermite-Hadamard Type Inequalities For Convex Functions Via New Fractional Conformable Integrals And Related Inequalities, AIP Conference Proceedings, 1991 (2018), 20006.
  • 13. F. Jarad, E. Uğurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ-NY, 2017 (2017), 247.
  • 14. A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.
  • 15. D. S. Mitrinoviç, J. E. Peèariæ, A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dortrecht, 1991.
  • 16. C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., 3 (2000), 155-167.
  • 17. M. A. Noor, K. A. Noor, M. A. Awan, Fractional Ostrowski inequalities for (s,m)-Godunova-Levin functions, Facta Universitatis, Series: Mathematics and Informatics, 30 (2015), 489-499.
  • 18. A. M. Ostrowski, Über die absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227.
  • 19. M. E. Özdemir, H. Kavurmaci, E. Set, Ostrowski's type inequalities for (α, m)-convex functions, Kyungpook Mathematical Journal, 50 (2010), 371-378.    
  • 20. M. E. Özdemir, A. O. Akdemir, E. Set, A new Ostrowski type inequality for double integrals, J. Inequal. Spec. Funct., 2 (2011), 27-34.
  • 21. M. E. Özdemir, A. O. Akdemir, E. Set, On the Ostrowski-Grüss type inequality for twice differentiable functions, Hacet. J. Math. Stat., 41 (2012), 651-655.
  • 22. M. Z. Sarıkaya, E. Set, On new Ostrowski type integral inequalities, Thai J. Math., 12 (2014), 145-154.
  • 23. M. Z. Sarıkaya, E. Set, M. E. Özdemir, Some Ostrowski's type inequalities for functions whose second derivatives are s-convex in the second sense, Demonstratio Mathematica, 47 (2014), 37-47.
  • 24. E. Set, J. Choi, A. Gözpınar, Hermite-Hadamard type inequalities for new fractional conformable integral operators, 2018. Available from: https://www.researchgate.net/publication/322936389.
  • 25. E. Set, A. Gözpınar, F. Demirci, Hermite-Hadamard type inequalities for quasi-convex functions via new fractional conformable integrals, AIP Conference Proceedings, 1991 (2018), 20002.
  • 26. E. Set, A. Karaoğlan, A. Gözpınar, Some inequalities related to different convex functions via new fractional conformable integrals, 2018.
  • 27. E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147-1154.    
  • 28. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
  • 29. A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors?, Eur. Phys. J. Plus, 134 (2019), 429.
  • 30. F. Jarad, T. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos, Solitons and Fractals, 117 (2018), 16-20.    
  • 31. M. A. Imran, M. Aleem, M. B. Riaz, et al. A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions, Chaos, Solitons and Fractals, 118 (2019), 274-289.    
  • 32. N. A. Asif, Z. Hammouch, M. B. Riaz, et al. Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 272.
  • 33. M. B. Riaz and A. Zafar, Exact solutions for the blood flow through a circular tube under the influence of a magnetic field using fractional Caputo-Fabrizio derivatives, Math. Model. Nat. Pheno., 13 (2018), 8.
  • 34. M. B. Riaz, N. A. Asif, A. Atangana, et al. Couette flows of a viscous fluid with slip effect and non-integer order derivative without singular kernel, Discrete and Continuous Dynamical Systems Series-S, 12 (2019), 645-664.    
  • 35. H. Yepez-Martinez and J. F. Gomez-Aguilar, Optical solitons solution of resonance nonlinear Schrodinger type equation with Atangana's-conformable derivative using sub-equation method, Waves in Random and Complex Media, (2019), 1-24.
  • 36. F. Gomez and B. Ghanbari, Optical soliton solutions of the Ginzburg-Landau equation with conformable derivative and Kerr law nonlinearity, Rev. Mex. Fis., 65 (2018), 73-81.
  • 37. V. F. Morales-Delgado, J. F. Gomez-Aguilar, R. F. Escobar-Jimenez, Fractional conformable attractors with low fractality, Math. Method. Appl. Sci., 41 (2018), 6378-6400.    
  • 38. V. F. Morales-Delgado, J. F. Gomez-Aguilar, R. F. Escobar-Jimenez, et al. Fractional conformable derivatives of Liouville-Caputo type with low-fractionality, Physica A: Statistical Mechanics and its Applications, 503 (2018), 424-438.    
  • 39. J. E. S. Perez, J. F. Gomez-Aguilar, D. Baleanu, et al. Chaotic Attractors with Fractional Conformable Derivatives in the Liouville-Caputo Sense and Its Dynamical Behaviors, Entropy, 20 (2018), 384.
  • 40. H. Yepez-Martinez and J. F. Gomez-Aguilar, Fractional sub-equation method for Hirota-Satsumacoupled KdV equation and coupled mKdV equation using the Atangana's conformable derivative, Waves in Random and Complex Media, 29 (2019), 678-693.    
  • 41. H. Yepez-Martinez, J. F. Gomez-Aguilar and A. Atangana, First integral method for non-linear differential equations with conformable derivative, Math. Model. Nat. Pheno., 13 (2018), 14.
  • 42. V. F. Morales-Delgado, J. F. Gomez-Aguilar and M. A. Taneco-Hernandez, Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense, AEU-Int. J. Electron. C., 85 (2018), 108-117.    

 

This article has been cited by

  • 1. Hüseyin Budak, Ebru Pehlivan, Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals, AIMS Mathematics, 2020, 5, 3, 1960, 10.3934/math.2020131
  • 2. Akdemir Ocak, Erhan Deniz, Ebru Yüksel, Some new generalizations for m-convexity via new conformable fractional integral operators, Mathematica Moravica, 2019, 23, 2, 69, 10.5937/MatMor1902069O
  • 3. Mehmet Kunt, Artion Kashuri, Tingsong Du, Abdul Wakil Baidar, Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities, AIMS Mathematics, 2020, 5, 6, 5439, 10.3934/math.2020349

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved