
AIMS Mathematics, 2019, 4(6): 16341663. doi: 10.3934/math.2019.6.1634
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Existence theory for coupled nonlinear thirdorder ordinary differential equations with nonlocal multipoint antiperiodic type boundary conditions on an arbitrary domain
1 Nonlinear Analysis and Applied Mathematics (NAAM)Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
3 Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
Received: , Accepted: , Published:
Special Issues: Initial and Boundary Value Problems for Differential Equations
References
1. L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems, London: Academic Press, 2017.
2. F. T. Akyildiz, H. Bellout, K. Vajravelu, et al. Existence results for third order nonlinear boundary value problems arising in nano boundary layer fluid flows over stretching surfaces, Nonlinear Anal. Real., 12 (2011), 29192930.
3. A. Abid, P. Eloe, Positive solutions of boundary value problems for ordinary differential equations with dependence on higher order derivatives, Comm. Appl. Nonlinear Anal., 24 (2017), 101108.
4. M. Ashordia, On boundary value problems for systems of nonlinear generalized ordinary differential equations, Czechoslovak Math. J., 67 (2017), 579608.
5. R. Liu, Z. Wu, Wellposedness of a class of twopoint boundary value problems associated with ordinary differential equations, Adv. Differ. Equ., 2018 (2018), 54.
6. V. A. Il'in, E. I. Moiseev, Nonlocal boundaryvalue problem of the first kind for a SturmLiouville operator in its differential and finite difference aspects, Diff. Equat., 23 (1987), 803810.
7. P. W. Eloe, B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, Appl. Math. Lett., 18 (2005), 521527.
8. J. R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems: A unified approach, J. London Math. Soc., 74 (2006), 673693.
9. S. Clark, J. Henderson, Uniqueness implies existence and uniqueness criterion for non local boundary value problems for thirdorder differential equations, Proc. Amer. Math. Soc., 134 (2006), 33633372.
10. J. R. Graef, J. R. L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. Theor., 71 (2009), 15421551.
11. M. Feng, X. Zhang, W. Ge, Existence theorems for a second order nonlinear differential equation with nonlocal boundary conditions and their applications, J. Appl. Math. Comput., 33 (2010), 137153.
12. B. Ahmad, S. K. Ntouyas, H. H. Alsulami, Existence results for nth order multipoint integral boundaryvalue problems of differential inclusions, Electron. J. Differ. Eq., 203 (2013), 113.
13. B. Ahmad, A. Alsaedi, N. AlMalki, On higherorder nonlinear boundary value problems with nonlocal multipoint integral boundary conditions, Lith. Math. J., 56 (2016), 143163.
14. M. Boukrouche, D. A. Tarzia, A family of singular ordinary differential equations of the third order with an integral boundary condition, Bound. Value Probl., 1 (2018), 32.
15. A. Alsaedi, M. Alsulami, R. P. Agarwal, et al. Some new nonlinear secondorder boundary value problems on an arbitrary domain, Adv. Differ. Equ., 1 (2018), 227.
16. B. Ahmad, A. Alsaedi, M. Alsulami, et al. Secondorder ordinary differential equations and inclusions with a new kind of integral and multistrip boundary conditions, Differ. Equ. Appl., 11 (2019), 183202.
17. T. Hayat, A. Aziz, T. Muhammad, et al. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet, J. Magn. Magn. Mater., 408, (2016), 99106.
18. T. Hayat, M. Z. Kiyani, I. Ahmad, et al. On analysis of magneto Maxwell nanomaterial by surface with variable thickness, Int. J. Mech. Sci., 131 (2017), 10161025.
19. G. S. Wang, A. F. Blom, A strip model for fatigue crack growth predictions under general load conditions, Eng. Fract. Mech., 40 (1991), 507533.
20. E. Yusufoglu, I. Turhan, A mixed boundary value problem in orthotropic strip containing a crack, J. Franklin Inst., 349 (2012), 27502769.
21. T. V. Renterghem, D. Botteldooren, K. Verheyen, Road traffic noise shielding by vegetation belts of limited depth, J. Sound Vib., 331 (2012), 24042425.
22. A. Granas, J. Dugundji, Fixed Point Theory, New York: SpringerVerlag, 2005.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)