AIMS Mathematics, 2019, 4(6): 1569-1581. doi: 10.3934/math.2019.6.1569.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On the finite reciprocal sums of Fibonacci and Lucas polynomials

Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla-768019, India

In this note, we consider the finite reciprocal sums of Fibonacci and Lucas polynomials and derive some identities involving these sums.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Fibonacci polynomials; Lucas polynomials; inequality; reciprocal; floor function

Citation: Utkal Keshari Dutta, Prasanta Kumar Ray. On the finite reciprocal sums of Fibonacci and Lucas polynomials. AIMS Mathematics, 2019, 4(6): 1569-1581. doi: 10.3934/math.2019.6.1569

References

  • 1. K. Kamano, Analytic continuation of the Lucas zeta and L-functions, Indag. Math., 24 (2013), 637-646.    
  • 2. T. Komatsu and G. K. Panda, On several kinds of sums of balancing numbers, arXiv:1608.05918, 2016.
  • 3. R. Liu and A. Y. Wang, Sums of products of two reciprocal Fibonacci numbers, Adv. Differ. Equ., 2016 (2016), 136.
  • 4. R. Ma and W. Zhang, Several identities involving the Fibonacci numbers and Lucas numbers, Fibonacci Quarterly, 45 (2007), 164-170.
  • 5. L. Navas, Analytic continuation of the Fibonacci Dirichlet series, Fibonacci Quarterly, 39 (2001), 409-418.
  • 6. H. Ohtsuka and S. Nakamura, On the sum of reciprocal Fibonacci numbers, Fibonacci Quarterly, 46/47 (2009), 153-159.
  • 7. A. Y. Wang and P. Wen, On the partial finite sums of the reciprocals of the Fibonacci numbers, J. Inequal. Appl., 2015 (2015), 73.
  • 8. T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roum., 55 (2012), 95-103.
  • 9. A. Y. Wang and W. Zhang, The reciprocal sums of even and odd terms in the Fibonacci sequence, J. Inequal. Appl., 2015 (2015), 376.
  • 10. A. Y. Wang and F. Zhang, The reciprocal sums of the Fibonacci 3-subsequences, Adv. Differ. Equ., 2016 (2016), 27.
  • 11. Z. Wu and W. Zhang, The sums of the reciprocal of Fibonacci polynomials and Lucas polynomials, J. Inequal. Appl., 2012 (2012), 134.
  • 12. Z. Wu and W. Zhang, Several identities involving the Fibonacci and Lucas polynomials, J. Inequal. Appl., 2013 (2013), 205.
  • 13. Y. Yuan and W. Zhang, Some identities involving the Fibonacci polynomials, Fibonacci Quarterly, 40 (2002), 314-318.
  • 14. W. Zhang and T. Wang, The infinite sum of reciprocal Pell numbers, Appl. Math. Comput., 218 (2012), 6164-6167.

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved