Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Classical solutions of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system

Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic

Special Issues: Initial and Boundary Value Problems for Differential Equations

We study solutions of the Dirichlet problem for the Brinkman system and for the DarcyForchheimer-Brinkman system in the spaces of functions ${\mathcal C}^{k,\alpha }(\overline \Omega ;{\mathbb R}^m)\times {\mathcal C}^{k-1,\alpha } (\overline \Omega )$, where $\Omega \subset {\mathbb R}^m$ is a bounded domain.
  Article Metrics

Keywords Brinkman system; Darcy-Forchheimer-Brinkman system; Dirichlet problem; classical solution; regularity

Citation: Dagmar Medková. Classical solutions of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system. AIMS Mathematics, 2019, 4(6): 1540-1553. doi: 10.3934/math.2019.6.1540


  • 1. D. A. Nield, A. Bejan, Convection in Porous Media, 4 Eds., New York: Springer, 2013.
  • 2. M. Kohr, M. L. de Cristoforis, S. E. Mikhailov, et al. Integral potential method for a transmission problem with Lipschitz interface in R3 for the Stokes and Darcy-Forchheimer-Brinkman PDE systems, Z. Angew. Math. Phys., 67 (2016), 116.
  • 3. M. Kohr, M. L. de Cristoforis, W. L. Wendland, On the Robin-transmission boundary value problems for the nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes systems, J. Math. Fluid Mech., 18 (2016), 293-329.    
  • 4. M. Kohr, M. L. de Cristoforis, W. L. Wendland, Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains, J. Math. Fluid Mech., 16 (2014), 595-630.    
  • 5. R. Gutt, M. Kohr, S. E. Mikhailov, et al. On the mixed problem for the semilinear DarcyForchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains, Math. Meth. Appl. Sci., 40 (2017), 7780-7829.    
  • 6. T. Grosan, M. Kohr, W. L. Wendland, Dirichlet problem for a nonlinear generalized DarcyForchheimer-Brinkman system in Lipschitz domains, Math. Meth. Appl. Sci., 38 (2015), 3615-3628.    
  • 7. R. Gutt, T. Grosan, On the lid-driven problem in a porous cavity: A theoretical and numerical approach, Appl. Math. Comput., 266 (2015), 1070-1082.
  • 8. M. Kohr, M. L. de Cristoforis, W. L. Wendland, Poisson problems for semilinear Brinkman systems on Lipschitz domains in Rn, Z. Angew. Math. Phys., 66 (2015), 833-864.    
  • 9. M. Kohr, W. L. Wendland, Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds, Calc. Var. Partial Differ. Eq., 57 (2018), 165.
  • 10. D. Medková, Bounded solutions of the Dirichlet problem for the Stokes resolvent system, Complex Var. Elliptic Eq., 61 (2016), 1689-1715.    
  • 11. A. Kufner, O. John, S. Fučík, Function Spaces, Prague: Academia, 1977.
  • 12. E. M. Stein, Singular Integrals and Differentiability of Functions, New Jersey: Princeton University Press, 1970.
  • 13. W. Varnhorn, The Stokes Equations, Berlin: Akademie Verlag, 1994.
  • 14. D. Medková, The Laplace Equation, Springer, 2018.
  • 15. V. A. Solonnikov, General boundary value problems for Douglas-Nirenberg elliptic systems Ⅱ, Proc. Steklov Inst. Math., 92 (1966), 212-272.
  • 16. P. Maremonti, R. Russo, G. Starita, On the Stokes equations: The boundary value problem, In: P. Maremonti, Advances in Fluid Dynamics, Dipartimento di Matematica, 1999, 69-140.
  • 17. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, New York: Cambridge University Press, 1992.
  • 18. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady State Problems, 2 Eds., Springer, 2011.
  • 19. D. Gilberg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Berlin Heidelberg: Springer, 2001.
  • 20. R. A. Adams, J. L. Fournier, Sobolev Spaces, 2 Eds., Oxford: Elsevier, 2003.
  • 21. M. Dobrowolski, Angewandte Functionanalysis. Functionanalysis, Sobolev-Räume und elliptische Differentialgleichungen, 2 Eds., Berlin Heidelberg: Springer, 2010.
  • 22. G. P. Galdi, G. Simader, H. Sohr, On the Stokes problem in Lipschitz domains, Ann. Mat. Pura Appl., 167 (1994), 147-163.    
  • 23. M. Mitrea, M. Wright, Boundary Value Problems for the Stokes System in Arbitrary Lipschitz Domains, Paris: Société mathématique de France, 2012.
  • 24. C. Amrouche, V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J., 44 (1994), 109-140.
  • 25. D. R. Smart, Fixed Point Theorems, Cambridge: Cambridge University Press, 1974.


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved