AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Some inequalities via Ψ-Riemann-Liouville fractional integrals

School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan

In this paper, we establish some Hermite-Hadamard type inequalities via $\psi$-Riemann-Liouville fractional integrals for $s$-convex functions in second sense and the functions belongs to the class $P(I)$ $($that is, a class of non-negative functions $\curlyvee:I\rightarrow\mathbb{R}$ which satisfies the condition $\curlyvee(ra_1+(1-r)a_2)\leq \curlyvee(a_1)+\curlyvee(a_2)$, for all $a_1,a_2\in I$ and $r\in[0,1])$. Some applications to special means are also investigated.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Hermite-Hadamard inequalities; s-convex functions in second sense; non-negative functions P(I)

Citation: Naila Mehreen, Matloob Anwar. Some inequalities via Ψ-Riemann-Liouville fractional integrals. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403

References

  • 1. M. Avci, H. Kavurmaci, M. E. Ozdemir, New inequalities of Hermite-Hadamard type via sconvex functions in the second sense with applications, Appl. Math. Comput., 217 (2011), 5171-5176.
  • 2. F. Chen, Extension of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals, Appl. Math. Comput., 268 (2015), 121-128.
  • 3. F. Chen, S. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705-716.    
  • 4. S. S. Dragomir, S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32 (1999), 687-696.
  • 5. S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341.
  • 6. J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., (1893), 171-215.
  • 7. Ch. Hermite, Sur deux limites d'une integrale denie, Mathesis., 3 (1883), 82.
  • 8. H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111.    
  • 9. I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935-942.
  • 10. I. Iscan, Hermite-Hadamard type inequalities for p-convex functions, Int. J. Ana. Appl., 11 (2016), 137-145.
  • 11. M. Jleli, D. O'Regan, B. Samet, On Hermite-Hadamard type inequalities via generalized fractional integrals, Turk. J. Math., 40 (2016), 1221-1230.    
  • 12. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier Science, 2006.
  • 13. K. Liu, J. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for Ψ-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27.
  • 14. C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications. A Contemporary Approach, 2 Eds., New York: Springer, 2018.
  • 15. N. Mehreen, M. Anwar, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via new fractional conformable integral operators, J. Math. Compt. Sci., 19 (2019), 230-240.    
  • 16. N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities via exponentially p-convex functions and exponentially s-convex functions in second sense with applications, J. Inequal. Appl., 2019 (2019), 92.
  • 17. N. Mehreen, M. Anwar, Integral inequalities for some convex functions via generalized fractional integrals, J. Inequal. Appl., 2018 (2018), 208.
  • 18. M. Z. Sarikaya, E. Set, H. Yaldiz, et al., Hermite-Hadamard's inequlities for fractional integrals and related fractional inequalitis, Math. Comput. Modelling, 57 (2013), 2403-2407.    
  • 19. E. Set, M. Z. Sarikaya, A. Gozpinar, Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math. Inform., Accepted paper, 2017.
  • 20. E. Set, M. Z. Sarikaya, M. E. Ozdemir, et al., The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inform., 10 (2014), 69-83.    
  • 21. J. V. C. Sousa, E. C. Oliveira, On the Ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simulat., 60 (2018), 72-91.    

 

This article has been cited by

  • 1. Naila Mehreen, Matloob Anwar, On some Hermite–Hadamard type inequalities for tgs$tgs$-convex functions via generalized fractional integrals, Advances in Difference Equations, 2020, 2020, 1, 10.1186/s13662-019-2457-x
  • 2. Naila Mehreen, Matloob Anwar, Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for p-convex functions via conformable fractional integrals, Journal of Inequalities and Applications, 2020, 2020, 1, 10.1186/s13660-020-02363-3
  • 3. Yong Zhao, Haiwei Sang, Weicheng Xiong, Zhongwei Cui, Hermite–Hadamard-type inequalities involving ψ-Riemann–Liouville fractional integrals via s-convex functions, Journal of Inequalities and Applications, 2020, 2020, 1, 10.1186/s13660-020-02389-7

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved