AIMS Mathematics, 2019, 4(5): 1369-1385. doi: 10.3934/math.2019.5.1369.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On some stochastic differential equations with jumps subject to small positives coefficients

Laboratory of Mathematics and Applications, UFR Sciences & Technologies, University of Assane SecK, UASZ, BP 523, Ziguinchor, Senegal

We provide a large deviation principle for jumps and stochastic diffusion processes, according to a viscosity coefficient (ε) and a small scaling parameter (δ) both going at the same rate. To do so we have to come up with estimates on the moment Lyapunov function trajectories.
  Figure/Table
  Supplementary
  Article Metrics

Keywords homogenization; large deviations; laplace principle; Poisson point process of class (QL)

Citation: Clement Manga, Alioune Coulibaly, Alassane Diedhiou. On some stochastic differential equations with jumps subject to small positives coefficients. AIMS Mathematics, 2019, 4(5): 1369-1385. doi: 10.3934/math.2019.5.1369

References

  • 1. P. Baldi, Large deviations for diffusions processes with homogenization applications, Ann. Probab., 19 (1991), 509–524.
  • 2. P. H. Baxendale, D. W. Stoock, Large deviations and stochastic flows of diffeomorphisms, Probab. Th. Rel. Fields, 80 (1988), 169–215.
  • 3. D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2009.
  • 4. C. Manga, A. Coulibaly, A. Diedhiou, On jumps stochastic evolution equations with application of homogenization and large deviations, J. Math. Res., 11 (2019), 125–134.
  • 5. A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Boston: Jones and Bartlett, 1998.
  • 6. J. Feng, T. G. Kurtz, Large Deviations for Stochastic Processes, Providence: American Mathematical Society, 2006.
  • 7. J. Kueibs, W. V. Li, W. Linde, The gaussian measure of shifted balls, Probab. Th. Rel. Fields, 98 (1994), 143–162.
  • 8. M. I. Freidlin, Functional Integration and Partial Differential Equations, Princeton: Princeton University Press, 1985.
  • 9. M. I. Freidlin, R. B. Sowers, A comparison of homogenization and large deviations, with applications to wavefront propagation, Stoch. Proc. Appl., 82 (1999), 23–52.
  • 10. N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Elsevier, 2014.
  • 11. E. Pardoux, Yu. Veretennikov, On the Poisson equation and diffusion approximation, I. Ann. Probab., 29 (2001), 1061–1085.
  • 12. M. Röckner, T. Zhang, Stochastic evolution equations of jump type: Existence, uniqueness and large deviation principles, T. Potential Anal., 26 (2007), 255–279.
  • 13. S. R. S. Varadhan, Large Deviations and Applications, Philadelphia: Society for Industrial and Applied Mathematics, 1984.
  • 14. A. W. van der Vaart, J. H. van Zanten, Rates of contraction of posterior distributions based on Gaussian process priors, Ann. Statist., 36 (2008), 1435–1463.
  • 15. H. Y. Zhao, S. Y. Xu, Freidlin-Wentzell's large deviations for stochastic evolution equations with Poisson jumps, Adv. Pure Math., 6 (2016), 676–694.

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved