AIMS Mathematics, 2019, 4(5): 1336-1347. doi: 10.3934/math.2019.5.1336

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Some results on ordinary words of standard Reed-Solomon codes

1 Mathematical College, Sichuan University, Chengdu 610064, P. R. China;
2 Department of Mathematics, Sichuan Tourism University, Chengdu 610100, P. R. China

The Reed-Solomon codes are widely used to establish a reliable channel to transmit information in digital communication which has a strong error correction capability and a variety of efficient decoding algorithm.We usually use the maximum likelihood decoding algorithm (MLD) in the decoding process of Reed-Solomon codes.MLD algorithm lies in determining its error distance.Li,Wan,Hong and Wu et al obtained some results on the error distance.For the ReedSolomon code $RS_q({\mathbb F}_q^*, k)$,the received word u is called an ordinary word of $RS_q({\mathbb F}_q^*, k)$,k) if the error distance $d({ u}, RS_q({\mathbb F}_q^*, k))=n-\deg(u(x))$ with u (x) being the Lagrange interpolation polynomial of u.In this paper,we make use of the polynomial method and particularly,we use the König-Rados theorem on the number of nonzero solutions of polynomial equation over finite fields to show that if $q\geq 4, 2\leq{k}\leq{q-2}$,then the received word ${ u}\in{\mathbb F}_q^{q-1}$ of degree q-2 is an ordinary word of $RS_q({\mathbb F}_q^*, k)$ if and only if its Lagrange interpolation polynomial u (x) is of the form
$$u(x)=\lambda\sum\limits_{i=k}^{q-2}a^{q-2-i}x^i+f_{\leq k-1}(x)$$
with $a, \lambda\in{\mathbb F}_q^*$ and $ f_{\leq k-1}(x)\in {\mathbb F}_q[x]$ being of degree at most k -1.This answers partially an open problem proposed by J.Y.Li and D.Q.Wan in [On the subset sum problem over finite fields,Finite Fields Appls.14(2008),911-929].
  Article Metrics


1. Q. Cheng and E. Murray, On deciding deep holes of Reed-Solomon codes. In:J.Y. Cai, S.B. Cooper, H. Zhu(eds) Theory and Applications of Models of Computation. TAMC 2007, Lecture Notes in Computer Science, vol. 4484, Springer, Berlin, Heidelberg.

2. S. F. Hong and R. J. Wu, On deep holes of generalized Reed-Solomon codes, AIMS Math., 1 (2016), 96-101.    

3. J. Y. Li and D. Q. Wan, On the subset sum problem over finite fields, Finite Fields Th. App., 14 (2008), 911-929.    

4. Y. J. Li and D. Q. Wan, On error distance of Reed-Solomon codes, Sci. China Math., 51 (2008), 1982-1988.    

5. Y. J. Li and G. Z. Zhu, On the error distance of extended Reed-Solomon codes, Adv. Math. Commun., 10 (2016), 413-427.    

6. R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications, 2 Eds., Cambridge:Cambridge University Press, 1997.

7. G. Rados, Zur Theorie der Congruenzen höheren Grades, J. reine angew. Math., 99 (1886), 258-260.

8. G. Raussnitz, Zur Theorie de Conguenzen höheren Grades, Math. Naturw. Ber. Ungarn., 1 (1882/83), 266-278.

9. R. J. Wu and S. F. Hong, On deep holes of standard Reed-Solomon codes, Sci. China Math., 55 (2012), 2447-2455.    

10. X. F. Xu, S. F. Hong and Y. C. Xu, On deep holes of primitive projective Reed-Solomon codes, SCIENTIA SINICA Math., 48 (2018), 1087-1094.    

11. X. F. Xu and Y. C. Xu, Some results on deep holes of generalized projective Reed-Solomon codes, AIMS Math., 4 (2019), 176-192.    

12. G. Z. Zhu and D. Q. Wan. Computing error distance of Reed-Solomon codes. In:TAMC 2012 Proceedings of the 9th Annual international conference on Theory and Applications of Models of Computation, (2012), 214-224.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved