
AIMS Mathematics, 2019, 4(4): 12231247. doi: 10.3934/math.2019.4.1223
Research article Topical Section
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Oversmoothing regularization with $\ell^1$penalty term
Faculty for Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany
Received: , Accepted: , Published:
Topical Section: Mathematical modeling
References
1. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Dordrecht: Kluwer Academic Publishers, 1996.
2. A. K. Louis, Inverse und schlecht gestellt Probleme, Stuttgart: Teubner, 1989.
3. D. Gerth and B. Hofmann, On $\ell^1$regularization under continuity of the forward operator in weaker topologies. In: New Trends in Parameter Identification for Mathematical Models (Ed.: B. Hofmann, A. Leitao, J.P. Zubelli), Cham: Birkhäuser, (2018), 6788.
4. B. Hofmann, B. Kaltenbacher, C. Pöschl, et al. A convergence rates result for Tikhonov regularization in Banach spaces with nonsmooth operators, Inverse Probl., 23 (2007), 9871010.
5. B. Hofmann and P. Mathé, Parameter choice in Banach space regularization under variational inequalities, Inverse Probl., 28 (2012), 104006.
6. F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Appl. Anal., 18 (1984), 2937.
7. B. Hofmann and P. Mathé, Tikhonov regularization with oversmoothing penalty for nonlinear illposed problems in Hilbert scales, Inverse Probl., 34 (2018), 015007.
8. B. Hofmann and P. Mathé, A priori parameter choice in Tikhonov regularization with oversmoothing penalty for nonlinear illposed problems, 2019. Available from: https://arxiv.org/abs/1904.02014.
9. T. Schuster, B. Kaltenbacher, B. Hofmann, et al. Regularization Methods in Banach spaces, Berlin/Boston: De Gruyter, 2012.
10. B. Hofmann, On smoothness concepts in regularization for nonlinear inverse problems in Banach spaces. In: Mathematical and Computational Modeling: With Applications in Natural and Social Sciences, Engineering, and the Arts (Ed.: R. Melnik), New Jersey: John Wiley, (2015), 192221.
11. M. Burger, J. Flemming and B. Hofmann, Convergence rates in $\ell^1$regularization if the sparsity assumption fails, Inverse Probl., 29 (2013), 025013.
12. J. Flemming, B. Hofmann and I. Veselic, A unified approach to convergence rates for $\ell^1$regularization and lacking sparsity, J. Inverse Illposed Probl., 24 (2016), 139148.
13. I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pur. Appl. Math., 57 (2004), 14131457.
14. M. Grasmair, M. Haltmeier and O. Scherzer, Sparse regularization with lq penalty term, Inverse Probl., 24 (2008), 055020.
15. D. Lorenz, Convergence rates and source conditions for Tikhonov regularization with sparsity constraints, J. Inverse illposed Probl, 16 (2008), 463478.
16. R. Ramlau, Regularization properties of Tikhonov regularization with sparsity constraints, Electron. T. Numer. Anal., 30 (2008), 5474.
17. J. Flemming, Convergence rates for l1regularization without injectivitytype assumptions, Inverse Probl., 32 (2016), 095001.
18. D. Gerth, J. Flemming, Injectivity and weak*toweak continuity suffice for convergence rates in l1regularization, J. Inverse Illposed Probl., 26 (2018), 8594.
19. D. Gerth, Convergence rates for $\ell^1$regularization without the help of a variational inequality, Electron. T. Numer. Anal., 46 (2017), 233244.
20. B. Hofmann, P. Mathé and M. Schieck, Modulus of continuity for conditionally stable illposed problems in Hilbert space, J. Inverse Illposed Probl., 16 (2008), 567585.
21. D. Gerth, Using Landweber iteration to quantify source conditions  a numerical study, J. Inverse Illposed Probl., 27 (2019), 367383.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)