Citation: Daniel Gerth, Bernd Hofmann. Oversmoothing regularization with $\ell^1$-penalty term[J]. AIMS Mathematics, 2019, 4(4): 1223-1247. doi: 10.3934/math.2019.4.1223
[1] | H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Dordrecht: Kluwer Academic Publishers, 1996. |
[2] | A. K. Louis, Inverse und schlecht gestellt Probleme, Stuttgart: Teubner, 1989. |
[3] | D. Gerth and B. Hofmann, On $\ell^1$-regularization under continuity of the forward operator in weaker topologies. In: New Trends in Parameter Identification for Mathematical Models (Ed.: B. Hofmann, A. Leitao, J.P. Zubelli), Cham: Birkhäuser, (2018), 67-88. |
[4] | B. Hofmann, B. Kaltenbacher, C. Pöschl, et al. A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Probl., 23 (2007), 987-1010. doi: 10.1088/0266-5611/23/3/009 |
[5] | B. Hofmann and P. Mathé, Parameter choice in Banach space regularization under variational inequalities, Inverse Probl., 28 (2012), 104006. |
[6] | F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Appl. Anal., 18 (1984), 29-37. doi: 10.1080/00036818408839508 |
[7] | B. Hofmann and P. Mathé, Tikhonov regularization with oversmoothing penalty for non-linear ill-posed problems in Hilbert scales, Inverse Probl., 34 (2018), 015007. |
[8] | B. Hofmann and P. Mathé, A priori parameter choice in Tikhonov regularization with oversmoothing penalty for non-linear ill-posed problems, 2019. Available from: https://arxiv.org/abs/1904.02014. |
[9] | T. Schuster, B. Kaltenbacher, B. Hofmann, et al. Regularization Methods in Banach spaces, Berlin/Boston: De Gruyter, 2012. |
[10] | B. Hofmann, On smoothness concepts in regularization for nonlinear inverse problems in Banach spaces. In: Mathematical and Computational Modeling: With Applications in Natural and Social Sciences, Engineering, and the Arts (Ed.: R. Melnik), New Jersey: John Wiley, (2015), 192-221. |
[11] | M. Burger, J. Flemming and B. Hofmann, Convergence rates in $\ell^1$-regularization if the sparsity assumption fails, Inverse Probl., 29 (2013), 025013. |
[12] | J. Flemming, B. Hofmann and I. Veselic, A unified approach to convergence rates for $\ell^1$-regularization and lacking sparsity, J. Inverse Ill-posed Probl., 24 (2016), 139-148. |
[13] | I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pur. Appl. Math., 57 (2004), 1413-1457. doi: 10.1002/cpa.20042 |
[14] | M. Grasmair, M. Haltmeier and O. Scherzer, Sparse regularization with lq penalty term, Inverse Probl., 24 (2008), 055020. |
[15] | D. Lorenz, Convergence rates and source conditions for Tikhonov regularization with sparsity constraints, J. Inverse ill-posed Probl, 16 (2008), 463-478. |
[16] | R. Ramlau, Regularization properties of Tikhonov regularization with sparsity constraints, Electron. T. Numer. Anal., 30 (2008), 54-74. |
[17] | J. Flemming, Convergence rates for l1-regularization without injectivity-type assumptions, Inverse Probl., 32 (2016), 095001. |
[18] | D. Gerth, J. Flemming, Injectivity and weak*-to-weak continuity suffice for convergence rates in l1-regularization, J. Inverse Ill-posed Probl., 26 (2018), 85-94. doi: 10.1515/jiip-2017-0008 |
[19] | D. Gerth, Convergence rates for $\ell^1$-regularization without the help of a variational inequality, Electron. T. Numer. Anal., 46 (2017), 233-244. |
[20] | B. Hofmann, P. Mathé and M. Schieck, Modulus of continuity for conditionally stable ill-posed problems in Hilbert space, J. Inverse Ill-posed Probl., 16 (2008), 567-585. |
[21] | D. Gerth, Using Landweber iteration to quantify source conditions - a numerical study, J. Inverse Ill-posed Probl., 27 (2019), 367-383. doi: 10.1515/jiip-2018-0071 |