Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Simpson’s type integral inequalities for ĸ-fractional integrals and their applications

1 Department of Mathematics, Government University Faisalabad, Pakistan
2 Department of Mathematics, COMSATS University Islamabad, Pakistan
3 Department of Mathematics, Faculty of Science and Letters, Agri Ibrahim Ҫeҫen University, Agri, Turkey
4 Department of Mathematics, Ҫankaya University, 06790 Etimesgut, Ankara, Turkey

Special Issues: Recent Advances in Fractional Calculus with Real World Applications

In this paper, some new inequalities of Simpson's type are set up for the classes of functions whose derivatives of absolute are preinvex by means of ĸ-fractional integrals. Additionally, by extraordinary choices of n and ĸ, we give some diminished outcomes. Meanwhile, we also provide the inequalities for $\mathcal{F}$-divergence measures and in probabilistic versions.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Simpson’s type inequality; s-preinvex functions; ĸ-fractional integrals

Citation: Saima Rashid, Ahmet Ocak Akdemir, Fahd Jarad, Muhammad Aslam Noor, Khalida Inayat Noor. Simpson’s type integral inequalities for ĸ-fractional integrals and their applications. AIMS Mathematics, 2019, 4(4): 1087-1100. doi: 10.3934/math.2019.4.1087

References

  • 1.S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533-579.
  • 2.J. Alzabut, T. Abdeljawad, A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system, Appl. Anal. Discr. Math., 12 (2018), 36-48.    
  • 3.T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s, m)-convex functions, Appl. Math. Comput., 293 (2017), 358-369.
  • 4.K. C. Hsu, S. R. Hwang, K. L. Tseng, Some extendedSimpson-type inequalities and applications, B. Iran. Math. Soc.,43 (2017), 409-425.
  • 5.M. Matloka, Weighted Simpson type inequalities for h-convexfunctions, J. Nonlinear Sci. Appl., 10 (2017), 5770-5780.    
  • 6.S. Mubeen, G. M. Habibullah, On k-fractional integrals andapplication, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
  • 7.M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-330.    
  • 8.M. A. Noor, Invex Equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475.    
  • 9.M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126-131.
  • 10.M. A. Noor, Hadamard integral inequalities for product of two preinvex functions, Nonlinear Anal. Forum, 14 (2009), 167-173.
  • 11.M. A. Noor, K. I. Noor, Some characterization of strongly preinvex functions, J. Math. Anal. Appl., 316 (2006), 697-706.    
  • 12.M. A. Noor, K. I. Noor, Generalized preinvex functions and their properties, Journal of Applied Mathematics and Stochastic Analysis, 2006 (2006), 1-13.
  • 13.M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242-251.
  • 14.M. A. Noor, K. I. Noor, S. Rashid, On some new classes of preinvex functions and inequalities, Mathematics., 7 (2018), 29.
  • 15.C. Ravichandran, K. Jothimani, H. M. Baskonus, et al. New results on nondensely characterized integrodifferential equations with fractional order, Eur. Phys. J. Plus , 133 (2018), 109.
  • 16.C. Ravichandran, K. Logeswari, F. Jarad,New results on existence in the framework of Atangana-Baleanu derivative for fractionalintegro-differential equations, Chaos Soliton. Fract., 125 (2019), 194-200.    
  • 17.C. Ravichandran, N. Valliammal, J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin I. , 356 (2019), 1535-1565.    
  • 18.M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl.,60 (2010), 2191-2199.    
  • 19.E. Set, A. O. Akdemir, M. E. Ozdemir, Simpson type integral inequalities for convex functionsvia Riemann-Liouville integrals, Filomat, 31 (2017), 4415-4420.    

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved