
AIMS Mathematics, 2019, 4(3): 896909. doi: 10.3934/math.2019.3.896.
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs
1 Department of Applied Mathematics, Noakhali Science and Technology University, Bangladesh
2 Department of Mathematics, Khulna University of Engineering & Technology, Bangladesh
3 Department of Applied Mathematics, University of Rajshahi, Bangladesh
Received: , Accepted: , Published:
Keywords: the generalized Kudryashov method; BurgersHuxley equation; mKdV equation; first extended fifth order nonlinear equation; closed form traveling wave solution
Citation: M. A. Habib, H. M. Shahadat Ali, M. Mamun Miah, M. Ali Akbar. The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs. AIMS Mathematics, 2019, 4(3): 896909. doi: 10.3934/math.2019.3.896
References:
 1.M. Wang, Y. Zhou, Z. Li, Application of homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 216 (1996), 6775.
 2.M. Younis, A. Zafar, The modified simple equation method for solving the nonlinear Phifour equation, Int. J. Innov. Appl. Stud., 2 (2013), 661664.
 3.W. W. Li, Y. Tian, Z. Zhang, Fexpansion method and its application for finding new exact solutions to the SineGordon and SinhGordon equations, Appl. Math. Comput., 219 (2012), 11351143.
 4.S. Zhang, T. Xia, An improved generalized Fexpansion method and its application to the (2+1) dimensional KdV equations, Commun. Nonlinear Sci., 13 (2008), 12941301.
 5.H. M. Baskonus, New acoustic wave behaviors to the DaveyStewartson equation with powerlaw nonlinearity arising in fluid dynamics, Nonlinear Dynam., 86 (2016), 177183.
 6.C. Cattani, T. A. Sulaiman, H. M. Baskonus, et al. Solitons in an inhomogeneous Murnaghan's rod, Eur. Phys. J. Plus, 133 (2018), 228.
 7.C. Cattani, T. A. Sulaiman, H. M. Baskonus, et al. On the soliton solutions to the NizhnikNovikovVeselov and the Drinfel'sSokolov systems, Opt. Quant. Electron., 50 (2018), 138.
 8.O. A. Ilhan, A. Esen, H. Bulut, et al. Singular solitons in the pseudoparabolic model arising in nonlinear surface waves, Results Phys., 12 (2019), 17121715.
 9.A. M. Wazwaz, Multiple soliton solutions for the Boussinesq equation, Appl. Math. Comput., 192 (2007), 479486.
 10.A. M. Wazwaz, The tanh method for traveling wave solutions of nonlinear equations, Appl. Math. Comput., 154 (2004), 713723.
 11.A. Bekir, New exact traveling wave solutions of some complex nonlinear equations, Commun. Nonlinear Sci., 14 (2009), 10691077.
 12.M. Mirzazadeh, M. E. Slami, E. Zerrad, et al. Optical solitons in nonlinear directional couplers by sinecosine function method and Bernoulli's equation approach, Nonlinear Dynam., 81 (2015), 19331949.
 13.M. Kaplan, A. Bekir, M. N. Ozer, Solving nonlinear evolution equation system using two different methods, Open Phys., 13 (2015), 383388.
 14.M. M. Miah, H. M. S. Ali, M. A. Ali, et al. Some applications of the (G′/G, 1/G)expansion method to find new exact solutions of NLEEs, Eur. Phys. J. Plus, 132 (2017), 252.
 15.M. M. Miah, H. M. S. Ali, M. A. Ali, An investigation of abundant traveling wave solutions of complex nonlinear evolution equations: The perturbed nonlinear Schrodinger equation and the cubicquintic GinzburgLandau equation, Cog. Math., 3 (2016), 1277506.
 16.A. Neirameh, New analytical solutions for the coupled nonlinear Maccari's system, Alex. Eng. J., 55 (2016), 28392847.
 17.A. J. M. Jawad, M. J. AbuAlshaeer, A. Biswas, et al. Hamiltonian perturbation of optical solitons with parabolic law nonlinearity using three integration methodologies, Optik, 160 (2018), 248254.
 18.X. Lu, S. T. Chen, W. X. Ma, Constructing lump solutions to a generalized KadomtsevPetviashviliBoussinesq equation, Nonlinear Dynam., 86 (2016), 523534.
 19.X. Lu, W. X. Ma, Y. Zhou, et al. Rational solutions to an extended KadomtsevPetviashvililike equation with symbolic computation, Comput. Math. Appl., 71 (2016), 15601567.
 20.X. Lu, W. X. Ma, S. T. Chen, et al. A note on rational solutions to a HirotaSatsumalike equation, Appl. Math. Lett., 58 (2016), 1318.
 21.J. H. He, M. A. Abdou, New periodic solutions for nonlinear evolution equations using Expfunction method, Chaos Soliton. Fract., 34 (2007), 14211429.
 22.Y. Y. Wang, Y. P. Zhang, C. Q. Dai, REstudy on localized structures based on variable separation solutions from the modified tanhfunction method, Nonlinear Dynam., 83 (2016), 13311339.
 23.E. Fan, Extended TanhFunction method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000), 212218.
 24.J. Manafian, M. F. Aghdaei, M. Khalilian, et al. Application of the generalized (G′/G) expansion method for nonlinear PDEs to obtaining soliton wave solution, Optik, 135 (2017), 395406.
 25.L. N. Gao, X. Y. Zhao, Y. Y. Zi, et al. Resonant behavior of multiple wave solutions to a Hirota bilinear equation, Comput. Math. Appl., 72 (2016), 12251229.
 26.L. N. Gao, Y. Y. Zi, Y. H. Yin, et al. Backlund transformation, multiple wave solutions and lump solutions to a (3+1)dimensional nonlinear evolution equation, Nonlinear Dynam., 89 (2017), 22332240.
 27.Y. H. Yin, W. X. Ma, J. G. Liu, et al. Diversity of exact solutions to a (3+1)dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 76 (2018), 12751283.
 28.M. Kaplan, K. Hosseini, Investigation of exact solutions for the Tzitzéica type equations in nonlinear optics, Optik, 154 (2018), 393397.
 29.A. R. Adem, B. Muatjetjeja, Conservation laws and exact solutions for a 2D ZakharovKuznetsov equation, Appl. Math. Lett., 48 (2015), 109117.
 30.H. Naher, F. A. Abdullah, M. A. Akbar, Generalized and improved (G′/G)expansion method for (3+1) dimensional modified KdVZakharovKuznetsev equation, PLOS One, 8 (2013), 64618.
 31.H. M. Baskonus, Complex Soliton Solutions to the GilsonPickering Model, Axioms, 8 (2019), 18.
 32.H. M. Baskonus, New complex and hyperbolic function solutions to the generalized double combined SinhCoshGordon equation, AIP Conference Proceedings, 1798 (2017), 020018.
 33.H. Naher, F. A. Abdullah, New traveling wave solutions by the extended generalized Riccati equation mapping method of the (2+1)dimensional evolution equation, J. Appl. Math., 2012 (2012), 486458.
 34.A. Yokus, Comparison of Caputo and conformable derivatives for timefractional Kortewegde Vries equation via the finite difference method, Int. J. Mod. Phys. B, 32 (2018), 1850365.
 35.A. Yokus, Numerical solution for space and time fractional order Burger type equation, Alex. Eng. J., 57 (2018), 20852091.
 36.A. Yokus, H. Bulut, On the numerical investigations to the CahnAllen equation by using finite difference method, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 9 (2018), 1823.
 37.K. Hosseini, D. Kumar, M. Kaplan, et al. New exact traveling wave solutions of the unstable nonlinear Schrodinger equations, Commun. Theor. Phys., 68 (2017), 761767.
 38.S. M. Ege, E. Misirli, The modified Kudryashov method for solving some Fractionalorder nonlinear equations, Adv. Differ. EquNy, 2014 (2014), 135.
 39.K. Hosseini, P. Mayeli, D. Kumar, New exact solutions of the coupled SineGordon equations in nonlinear optics using the modified Kudryashov method, J. Mod. Optic., 65 (2018), 361364.
 40.K. Hosseini, P. Mayeli, R. Ansari, Modified Kudryashov method for solving the conformable TimeFractional KleinGordon equations with Quadratic and cubic nonlinearities, Optik, 130 (2017), 737742.
 41.A. Korkmaz, K. Hosseini, Exact solutions of a nonlinear conformable TimeFractional parabolic equation with Exponential nonlinearity using reliable methods, Opt. Quant. Electron., 49 (2017), 278.
 42.K. Hosseini, E. Y. Bejarbaneh, A. Bekir, et al. New exact solutions of some nonlinear evolution equations of pseudo parabolic type, Opt. Quant. Electron., 49 (2017), 241.
 43.F. Mahmud, M. Samsuzzoha, M. A. Akbar, The generalized kudryashov method to obtain exact traveling wave solutions of the PHIfour equation and the Fisher equation, Results Phys., 7 (2017), 42964302.
 44.S. Bibi, N. Ahmed, U. Khan, et al. Some new exact solitary wave solutions of the van der Walls model arising in nature, Results Phys., 9 (2018), 648655.
 45.M. Kaplan, A. Bekir, A. Akbulut, A generalized kudryashov method to some nonlinear evolution equations in mathematical physics, Nonlinear Dynam., 85 (2016), 28432850.
 46.S. T. Demiray, Y. Pandir, H. Bulut, Generalized Kudryashov method for Timefractional differential equations, Abstr. Appl. Anal., 2014 (2014), 901540.
 47.K. A. Gepreel, T. A. Nofal, A. A. Alasmari, Exact solutions for nonlinear integropartial differential equations using the generalized Kudryashov method, Journal of the Egyptian Mathematical Society, 25 (2017), 438444.
 48.M. Koparan, M. Kaplan, A. Bekir, et al. A novel generalized Kudryashov method for exact solutions of nonlinear evolution equations, AIP Conference Proceedings, 1798 (2017), 020082.
 49.H. Kheiri, M. R. Moghaddam, V. Vafaei, Application of the (G'/G)expansion method for the Burgers, BurgersHuxley and modified BurgersKdV equations, Pramana, 76 (2011), 831842.
 50.M. L. Wang, X. Li, J. Wang, The (G'/G)expansion method and traveling wave solutions of nonlinear evolutions in mathematical physics, Phys. Lett. A, 372 (2008), 417423.
 51.A. K. M. Kazi Sazzad Hossain, M. A. Akbar, Closedform solutions of two nonlinear equations via the enhanced (G'/G)expansion method, Cog. Math., 4 (2017), 1355958.
 52.A. M. Wazwaz, Analytic study on Burgers, Fisher, Huxley equations and combined forms of these equations, Appl. Math. Comput., 195 (2008), 754761.
This article has been cited by:
 1. Sekson Sirisubtawee, Sanoe Koonprasert, Surattana Sungnul, New Exact Solutions of the Conformable SpaceTime Sharma–Tasso–Olver Equation Using Two Reliable Methods, Symmetry, 2020, 12, 4, 644, 10.3390/sym12040644
 2. Gulnur Yel, New wave patterns to the doubly dispersive equation in nonlinear dynamic elasticity, Pramana, 2020, 94, 1, 10.1007/s120430201941x
 3. Mohammed O AlAmr, Hadi Rezazadeh, Khalid K Ali, Alper Korkmazki, N1soliton solution for Schrödinger equation with competing weakly nonlocal and parabolic law nonlinearities, Communications in Theoretical Physics, 2020, 72, 6, 065503, 10.1088/15729494/ab8a12
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *