
AIMS Mathematics, 2019, 4(3): 805820. doi: 10.3934/math.2019.3.805.
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The price adjustment equation with different types of conformable derivatives in market equilibrium
Department of Mathematics, Firat University, 23119, Elazig, Turkey
Received: , Accepted: , Published:
Keywords: stability; time paths; Mderivative; betaderivative; market equilibrium
Citation: Erdal Bas, Bahar Acay, Ramazan Ozarslan. The price adjustment equation with different types of conformable derivatives in market equilibrium. AIMS Mathematics, 2019, 4(3): 805820. doi: 10.3934/math.2019.3.805
References:
 1. A. Takayama, Mathematical economics, Cambridge University Press, 1985.
 2. A. C. Chiang, Fundamental methods of mathematical economics, 1984.
 3. R. K. Nagle , E. B. Staff, A. D. Snider, Fundamentals Differential Equations, Pearson, 2008.
 4. R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 6570.
 5. T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 5766.
 6. T. Abdeljawad, J. Alzabut, F. Jarad, A generalized Lyapunovtype inequality in the frame of conformable derivatives, Adv. Differ. EquNy, 2017 (2017), 321.
 7. T. Abdeljawad, R. P. Agarwal, J. Alzabut, et al. Lyapunovtype inequalities for mixed nonlinear forced differential equations within conformable derivatives, J. Inequal. Appl., 2018 (2018), 143.
 8. F. M. Alharbi, D. Baleanu, A. Ebaid, Physical properties of the projectile motion using the conformable derivative, Chinese J. Phys., 58 (2019), 1828.
 9. A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889898.
 10. M. Ilie, J. Biazar, Z. Ayati, General solution of Bernoulli and Riccati fractional differential equations based on conformable fractional derivative, International Journal of Applied Mathematical Research, 6 (2017), 4951.
 11. E. Bas, R. Ozarslan, Real world applications of fractional models by AtanganaBaleanu fractional derivative, Chaos Soliton. Fract., 116 (2018), 121125.
 12. E. Bas, R. Ozarslan, D. Baleanu, et al. Comparative simulations for solutions of fractional SturmLiouville problems with nonsingular operators, Adv. Differ. EquNy, 2018 (2018), 350.
 13. E. Bas, The Inverse Nodal problem for the fractional diffusion equation, Acta SciTechnol, 37 (2015), 251257.
 14. E. Bas, B. Acay, R. Ozarslan, Fractional models with singular and nonsingular kernels for energy efficient buildings, Chaos, 29 (2019), 023110.
 15. A. Yusuf, S. Qureshi, M. Inc, et al. Twostrain epidemic model involving fractional derivative with MittagLeffler kernel, Chaos, 28 (2018), 123121.
 16. S. Qureshi, A. Yusuf, A. A. Shaikh, et al. Fractional modeling of blood ethanol concentration system with real data application, Chaos, 29 (2019), 013143.
 17. M. AlRefai, T. Abdeljawad, Fundamental results of conformable SturmLiouville eigenvalue problems, Complexity, 2017 (2017), 17.
 18. S. Qureshi, A. Yusuf, Modeling chickenpox disease with fractional derivatives: From caputo to AtanganaBaleanu, Chaos Soliton. Fract., 122 (2019), 111118.
 19. S. Qureshi, A. Yusuf, Fractional derivatives applied to MSEIR problems: Comparative study with real world data, The European Physical Journal Plus, 134 (2019), 171.
 20. S. Sakarya, M. Yavuz, A. D. Karaoglan, et al. Stock market index prediction with neural network during financial crises: a review on Bist100, Financial Risk and Management Reviews, 1 (2015), 5367.
 21. M. Yavuz, Novel solution methods for initial boundary value problems of fractional order with conformable differentiation, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8 (2017), 17.
 22. A. Atangana, D. Baleanu, A. Alsaedi, Analysis of timefractional HunterSaxton equation: a model of neumatic liquid crystal, Open Phys., 14 (2016), 145149.
 23. A. Atangana, A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women, Neural Comput. Appl., 26 (2015), 18951903.
 24. U. N. Katugampola, A new fractional derivative with classical properties, arXiv preprint arXiv:1410.6535, 2014.
 25. J. V. D. C. Sousa, E. C. de Oliveira, A new truncated Mfractional derivative type unifying some fractional derivative types with classical properties, Int. J. Anal. Appl., 16 (2018), 8396.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *