
AIMS Mathematics, 2019, 4(3): 763778. doi: 10.3934/math.2019.3.763
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A multiple objective programming approach to linear bilevel multifollower programming
Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Received: , Accepted: , Published:
References
1.J. F. Bard, Practical Bilevel Optimization, Kluwer Academic, Dordrecht, 1998.
2.M. S. Bazaraa, J. J. Jarvis, H. D. Sherali, Linear Programming and Network Flows, 2nd ed., Wiley, New York, 1977.
3.M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear Programming, Theory and Algorithms, 3nd ed., Wiley, New York, 2006.
4.H. P. Benson, Optimization over the efficient set, J. Math. Anal. Appl., 98 (1984), 562580.
5.S. Dempe, Foundations of Bilevel Programming, Kluwer Academic, Dordrecht 2003.
6.M. Ehrgott, Multicriteria Optimization, 2nd ed., Berlin, Germany: SpringerVerlag, 2005.
7.N. P. Faísca, P. M. Saraiva, B. Rustem, et al. A multiparametric programming approach for multilevel hierarchical and decentralized optimisation problems, Computer Management Sciences, 6 (2009), 377397.
8.J. Fülöp, On the equivalency between a linear bilevel programming problem and linear optimization over the efficient set, Technical Report WP 931, Laboratory of Operations Research and Decision Systems, Computer and Automation Institute, Hungarian Academy of Sciences, 1993.
9.J. Glackin, J. G. Ecker, M. Kupferschmid, Solving bilevel linear programs using multiple objective linear programming, J. Optimiz. Theory App., 140 (2009), 197212.
10.J. Han, G. Zhang, Y. Hu, et al. A solution to bi/trilevel programming problems using particle swarm optimization, Inform. Sciences, 370 (2016), 519537.
11.R. Horst, N. V. Thoai, Y. Yamamoto, et al. On optimization over the efficient set in linear multicriteria programming, J. Optimiz. Theory App., 134 (2007), 433443.
12.J. Jorge, A bilinear algorithm for optimizing a linear function over the efficient set of multiple objective linear programming problem, J. Global Optim., 31 (2005), 116.
13.J. Lu, C. Shi, G. Zhang, et al. Model and extended KuhnTucker approach for bilevel multifollower decision making in a referentialuncooperative situation, J. Global Optim., 38 (2007), 597608.
14.W. Ma, M. Wang, X. Zhu, Improved particle swarm optimization based approach for bilevel programming probleman application on supply chain model, Int. J. Mach. Learn. Cyb., 5 (2014), 281292.
15.B. Metev, Multiobjective optimization methods help to minimize a function over the efficient set, Cybernetics and Information Technologies, 7 (2007), 2228.
16.C. Miao, G. Du, R. J. Jiao, et al. Coordinated optimisation of platformdriven product line planning by bilevel programming, Int. J. Prod. Res., 55 (2017), 38083831.
17.C. O. Pieume, L. P. Fotso, P. Siarry, An approach for finding efficient points in multiobjective linear programming, Journal of Information and Optimization Sciences, 29 (2008), 203216.
18.C. O. Pieume, L. P. Fotso, P. Siarry, Solving bilevel programming problems with multicriteria optimization techniques, Opsearch., 46 (2009), 169183.
19.A. S. Safaei, S. Farsad, M. M. Paydar, Robust bilevel optimization of relief logistics operations, Appl. Math. Model., 56 (2018), 359380.
20.S. Sayin, An algorithm based on facial decomposition for finding the efficient set in multiple objective linear programming, Oper. Res. Lett., 19 (1996), 8794.
21.C. Shi, G. Zhang, J. Lu, A Kthbest Approach for Linear Bilevel Multifollower Programming, J. Global Optim., 33 (2005), 563578.
22.R. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, Wiley, New York, 1986.
23.G. Zhang, J. Lu, Y. Gao, MultiLevel Decision Making: Models, Methods and Applications, SpringerVerlag Berlin AN, 2016.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)