AIMS Mathematics, 2019, 4(3): 527-533. doi: 10.3934/math.2019.3.527.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

$\mathcal{A}$-valued norm parallelism in Hilbert $\mathcal{A}$-modules

Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad 91735, Iran

We define the concept of $\mathcal{A}$-valued norm parallelism in a Hilbert $\mathcal{A}$-module, and then we investigate some properties of this notion and present some characterizations of $\mathcal{A}$-valued norm parallelism in a Hilbert $\mathcal{A}$-module. We also show that if $X$ and $Y$ are two inner product $\mathcal{A}$-modules and $T:X \to Y $ is a linear map such that $|Tx|=|x|$, then $T$ preserves $\mathcal{A}$-valued norm parallelism in both directions.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Hilbert $\mathcal{A}$-modules; preserving map; parallelism; $\mathcal{A}$-valued norm parallelism

Citation: Ali Khalili, Maryam Amyari. $\mathcal{A}$-valued norm parallelism in Hilbert $\mathcal{A}$-modules. AIMS Mathematics, 2019, 4(3): 527-533. doi: 10.3934/math.2019.3.527

References

  • 1. L. Arambašića and R. Rajić, On some norm equalities in pre-Hilbert C*modules, Linear Algebra Appl., 414 (2006), 19-28.    
  • 2. L. Arambasic and R. Rajic, On the C*valued triangle equality and inequality in Hilbert C*-modules, Acta Math. Hung., 119 (2008), 373-380.    
  • 3. D. Bakic and B. Guljas, On a class of module maps of Hilbert C*-modules, Math. Commun., 7 (2002), 177-192.
  • 4. T. Bottazzi, C. Conde, M. S. Moslehian, et al. Orthogonality and parallelism of operators on various Banach spaces, J. Aust. Math. Soc., 106 (2019), 160-183.    
  • 5. E. C. Lance, Hilbert C*-modules, A Toolkit for Operator Algebraists, Cambridge Univ. Press, Cambridge, 1995.6. M. Mehrazin, M. Amyari, M. Erfanian Omidvar, A new type of Numerical radius of operators on Hilbert C*-modules, Rendiconti del Circolo Matematico di Palermo Series 2, 2018. Available from: http://doi.org/10.1007/s12215-018-0385-3.
  • 7. A. Zamani, The operator-valued parallelism, Linear Algebra Appl., 505 (2016), 282-295.    
  • 8. A. Zaman, M. S. Moslehian, Norm-parallelism in the geometry of Hilbert C*-modules, Indagat. Math. New. Ser., 27 (2016), 266-281.    
  • 9. A. Zamani, M. S. Moslehian, M. Frank, Angle preserving mappings, Z. Anal. Anwend., 34 (2015), 485-500.    

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved