Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On a generalized Lyapunov inequality for a mixed fractional boundary value problem

Laboratory of Advanced Materials, Department of Mathematics, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria

Special Issues: Initial and Boundary Value Problems for Differential Equations

In this paper, we establish a new Lyapunov-type inequality for a differential equation involving left Riemann-Liouville and right Caputo fractional derivatives subject to Dirichlet-type boundary conditions.
  Figure/Table
  Supplementary
  Article Metrics

Keywords fractional derivative; Lyapunov inequality; Green's function; eigenvalue problem

Citation: Rabah Khaldi, Assia Guezane-Lakoud. On a generalized Lyapunov inequality for a mixed fractional boundary value problem. AIMS Mathematics, 2019, 4(3): 506-515. doi: 10.3934/math.2019.3.506

References

  • 1. P. Ravi Agarwal and A. Özbekler, Lyapunov type inequalities for mixed nonlinear Riemann-Liouville fractional differential equations with a forcing term, J. Comput. Appl. Math., 314 (2017), 69-78.    
  • 2. R. Almeida, S. Pooseh and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations, London: Imperial College Press, 2015.
  • 3. A. Chidouh and D. F. M. Torres, A generalized Lyapunovs inequality for a fractional boundary value problem, J. Comput. Appl. Math., 312 (2017), 192-197.    
  • 4. D. Ma, A generalized Lyapunov inequality for a higher-order fractional boundary value problem, J. Inequal. Appl., 2016 (2016), 1-11.    
  • 5. S. Dhar, Q. Kong and M. McCabe, Fractional boundary value problems and Lyapunov-type inequalities with fractional integral boundary conditions, Electron. J. Qual. Theory Differ. Equations, 2016 (2016), 1-16.
  • 6. R. A. C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., 16 (2013), 978-984.
  • 7. R. A. C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412 (2014), 1058-1063.    
  • 8. R. A. C. Ferreira, Lyapunov-type inequalities for some sequential fractional boundary value problems, Adv. Dyn. Syst. Appl., 11 (2016), 33-43.
  • 9. R. A. C. Ferreira, Novel Lyapunov-type inequalities for sequential fractional boundary value problems, RACSAM Rev. R. Acad. A, 113 (2019), 171-179.
  • 10. M. Jleli and B. Samet, Lyapunov-type inequalities for fractional boundary value problems, Electron. J. Differ. Equations, 2015 (2015), 1-11.
  • 11. A. Guezane-Lakoud, R. Khaldi and D. F. M. Torres, Lyapunov-type inequality for a fractional boundary value problem with natural conditions, SeMA J., 75 (2018), 157-162.    
  • 12. P. Hartman and A. Wintner, On an oscillation criterion of Lyapunov, Amer. J. Math., 73 (1951), 885-890.    
  • 13. R. Khaldi and A. Guezane-Lakoud, Lyapunov inequality for a boundary value problem involving conformable derivative, Prog. Frac. Diff. Appl., 3 (2017), 323-329.    
  • 14. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science, 2006.
  • 15. A. M. Lyapunov, Problème général de la stabilité du mouvement, (French translation of a Russian paper dated 1893), Ann. Fac. Sci. Univ. Toulouse, 2 (1907), 27-247, Reprinted as Ann. Math. Studies, No. 17, Princeton, 1947.
  • 16. A. B. Malinowska, T. Odzijewicz and D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations, In series of Springer Briefs in Applied Sciences and Technology, Springer Cham Heidelberg, 2015.
  • 17. A. B. Malinowska and D. F. M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative, Comput. Math. Appl., 59 (2010), 3110-3116.    
  • 18. S. K. Ntouyas, B. Ahmad and T. P. Horikis, Recent developments of Lyapunov-type inequalities for fractional differential equations, in press. Available from: https://arxiv.org/pdf/1804.10760.pdf.
  • 19. I. Podlubny, Fractional Differential Equation, Sain Diego: Academic Press, 1999.
  • 20. Q. Ma, Ch. Ma and J. Wang, A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative, J. Math. Inequal., 11 (2011), 135-141.
  • 21. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Yverdon, Switzerland: Gordon and Breach, 1993.
  • 22. D. O'Regan and B. Samet, Lyapunov-type inequalities for a class of fractional differential equations, J. Inequal. Appl., 2015 (2015), 1-10.    
  • 23. J. Rong and C. Bai, Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions, Adv. Differ. Equations, 2015 (2015), 1-10.
  • 24. A. Wintner, On the non-existence of conjugate points, Amer. J. Math., 73 (1951), 368-380.    

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved