
AIMS Mathematics, 2019, 4(3): 359383. doi: 10.3934/math.2019.3.359
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Relative entropy minimization over Hilbert spaces via RobbinsMonro
1 Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA
2 Department of Ocean, Earth, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Received: , Accepted: , Published:
References
1.A. E. Albert and L. A. Gardner Jr., Stochastic approximation and nonlinear regression The MIT Press, 1967.
2.C. Andrieu and É. Moulines, On the ergodicity properties of some adaptive MCMC algorithms Ann. Appl. Probab. 16 (2006), 14621505.
3.C. Andrieu and J. Thoms, A tutorial on adaptive MCMC Stat. Comput. 18 (2008), 343373.
4.D. M. Blei, A. Kucukelbir and J. D. McAuliffe, Variational Inference: A Review for Statisticians J. Am. Stat. Assoc. 112 (2017), 859877.
5.J. R. Blum, Approximation methods which converge with probability one Annals of Mathematical Statistics 25 (1954), 382386.
6.J. R. Blum, Multidimensional stochastic approximation methods Annals of Mathematical Statistics 25 (1954), 737744.
7.S. D. Chatterji, Martingale convergence and the RadonNikodym theorem in Banach spaces Math. Scand. 22 (1968), 2141.
8.H.F. Chen, Stochastic approximation and its applications 2002.
9.G. Da Prato, An Introduction to InfiniteDimensional Analsysis Springer, 2006.
10.H. Haario, E. Saksman and J. Tamminen, An adaptive Metropolis algorithm Bernoulli 7 (2001), 223242.
11.H. J. Kushner and G. Yin, Stochastic Approximation and Recursive Algorithms and Applications Springer, 2003.
12.J. Lelong, Almost sure convergence of randomly truncated stochastic algorithms under verifiable conditions Stat. Probabil. Lett. 78 (2008), 26322636.
13.Y. Lu, A. Stuart and H. Weber, Gaussian approximations for probability measures on r^d SIAM/ASA Journal on Uncertainty Quantification 5 (2017), 11361165.
14.Y. Lu, A. Stuart and H. Weber, Gaussian approximations for transition paths in brownian dynamics SIAM J. Math. Anal. 49 (2017), 30053047.
15.F. J. Pinski, G Simpson, A. M. Stuart, et al. Algorithms for KullbackLeibler Approximation of Probability Measures in Infinite Dimensions SIAM J. Sci. Comput. 37 (2015), A2733A2757.
16.F. J. Pinski, G Simpson, A. M. Stuart, et al. KullbackLeibler Approximation for Probability Measures on Infinite Dimensional Spaces SIAM J. Math. Anal. 47 (2015), 40914122.
17.H. Robbins and S. Monro, A stochastic approximation method The Annals of Mathematical Statistics (1950), 400407.
18.G. O. Roberts and J. S. Rosenthal, Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms J. Appl. Probab. 44 (2007), 458475.
19.D. SanzAlonso and A. M. Stuart, Gaussian approximations of small noise diffusions in kullbackleibler divergence Commun. Math. Sci. 15 (2017), 20872097.
20.G. Yin and Y. M. Zhu, On Hvalued RobbinsMonro processes J. Multivariate Anal. 34 (1990), 116140.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)