Citation: Nataliya Gol'dman. On mathematical models with unknown nonlinear convection coefficients in one-phase heat transform processes[J]. AIMS Mathematics, 2019, 4(2): 327-342. doi: 10.3934/math.2019.2.327
| [1] | A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, Washington, D.C.: V.H.Winston & Sons, 1977. |
| [2] |
N. Zabaras and Y. Ruan, A deforming finite element method analysis of inverse Stefan problem, Int. J. Numer. Meth. Eng., 28 (1989), 295-313. doi: 10.1002/nme.1620280205
|
| [3] | Y. Rabin and A. Shitzer, Combined solution of the inverse Stefan problem for successive freezingthawing in nonideal biological tissues, J. Biomech. Eng-T ASME, 119 (1997), 146-152. |
| [4] |
A. El. Badia and F. Moutazaim, A one-phase inverse Stefan problem, Inverse Probl., 15 (1999), 1507-1522. doi: 10.1088/0266-5611/15/6/308
|
| [5] | C. Carthel and H.-W. Engl, Identification of heat transfer functions in continuous casting of steel by regularization, J. Inverse Ill-Pose P., 8 (2000), 677-693. |
| [6] | B. Furenes and B. Lie, Solidification and control of a liquid metal column, Simul. Model. Pract. Th., 14 (2006), 1112-1120. |
| [7] |
D. Slota, Homotopy perturbation method for solving the two-phase inverse Stefan problem, Numer. Heat Tr. A-Appl., 59 (2011), 755-768. doi: 10.1080/10407782.2011.572763
|
| [8] |
B. Johansson, D. Lesnic and T. Reeve, A method of fundamental solutions for the one-dimensional inverse Stefan problem, Appl. Math. Model., 35 (2011), 4367-4378. doi: 10.1016/j.apm.2011.03.005
|
| [9] | N. N. Salva and D. A. Tarzia, Simultaneous determination of unknown coefficients through a phasechange process with temperature-dependent thermal conductivity, JP J. Heat Mass Transfer, 5 (2011), 11-39. |
| [10] | J. A. Rad, K. Rashedi, K. Parand, et al. The meshfree strong form methods for solving onedimensional inverse Cauchy-Stefan problem, Engineering with Computers, 33 (2017), 547-571. |
| [11] | L. Levin, M. A. Semin, O. S. Parshakov, et al. Method for solving inverse Stefan problem to control ice wall state during shaft excavation, Perm. J. Petroleum and Mining Engineering, 16 (2017), 255-267. |
| [12] | G. M. M. Reddy, M. Vynnycky and J. A. Cuminato, On efficient reconstruction of boundary data with optimal placement of the source points in MFS: application to inverse Stefan problems, Inverse Probl. Sci. En., 26 (2018), 1249-1279. |
| [13] | A. Boumenir, V. K. Tuan and N. Hoang, The recovery of a parabolic equation from measurements at a single point, Evol. Equ. Control The., 7 (2018), 197-216. |
| [14] | N. L. Gol'dman, Inverse Stefan Problems, Dordrecht: Kluwer Academic, 1997. |
| [15] |
N. L. Gol'dman, Properties of solutions of the inverse Stefan problem, Differ. Equations, 39 (2003), 66-72. doi: 10.1023/A:1025120024905
|
| [16] | N. L. Gol'dman, One-phase inverse Stefan problems with unknown nonlinear sources, Differ. Equations, 49 (2013), 680-687. |
| [17] | N. L. Gol'dman, Investigation of mathematical models of one-phase Stefan problems with unknown nonlinear coefficients, Eurasian Mathematical Journal, 8 (2017), 48-59. |
| [18] | N. L. Gol'dman, Properties of solutions of parabolic equations with unknown coefficients, Differ. Equations, 47 (2011), 60-68. |
| [19] | O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Soc., 1968. |
| [20] | M. Lees and M. H. Protter, Unique continuation for parabolic differential equations and inequalities, Duke Math. J., 28 (1961), 369-383. |
| [21] | A. Friedman, Partial Differential Equations of Parabolic Type, New York: Prentice Hall, Englewood Cliffs, 1964. |
| [22] | M. Turkyilmazoglu, Stefan problems for moving phase change materials and multiple solutions, Int. J. Therm. Sci., 126 (2018), 67-73. |