
AIMS Mathematics, 2019, 4(2): 327342. doi: 10.3934/math.2019.2.327
Research article Topical Section
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
On mathematical models with unknown nonlinear convection coefficients in onephase heat transform processes
Science Research Computer Center, Moscow State University, Moscow 119992, Russia
Received: , Accepted: , Published:
Topical Section: Mathematical modeling
References
1. A. N. Tikhonov and V. Y. Arsenin, Solutions of IllPosed Problems, Washington, D.C.: V.H.Winston & Sons, 1977.
2. N. Zabaras and Y. Ruan, A deforming finite element method analysis of inverse Stefan problem, Int. J. Numer. Meth. Eng., 28 (1989), 295313.
3. Y. Rabin and A. Shitzer, Combined solution of the inverse Stefan problem for successive freezingthawing in nonideal biological tissues, J. Biomech. EngT ASME, 119 (1997), 146152.
4. A. El. Badia and F. Moutazaim, A onephase inverse Stefan problem, Inverse Probl., 15 (1999), 15071522.
5. C. Carthel and H.W. Engl, Identification of heat transfer functions in continuous casting of steel by regularization, J. Inverse IllPose P., 8 (2000), 677693.
6. B. Furenes and B. Lie, Solidification and control of a liquid metal column, Simul. Model. Pract. Th., 14 (2006), 11121120.
7. D. Slota, Homotopy perturbation method for solving the twophase inverse Stefan problem, Numer. Heat Tr. AAppl., 59 (2011), 755768.
8. B. Johansson, D. Lesnic and T. Reeve, A method of fundamental solutions for the onedimensional inverse Stefan problem, Appl. Math. Model., 35 (2011), 43674378.
9. N. N. Salva and D. A. Tarzia, Simultaneous determination of unknown coefficients through a phasechange process with temperaturedependent thermal conductivity, JP J. Heat Mass Transfer, 5 (2011), 1139.
10.J. A. Rad, K. Rashedi, K. Parand, et al. The meshfree strong form methods for solving onedimensional inverse CauchyStefan problem, Engineering with Computers, 33 (2017), 547571.
11.L. Levin, M. A. Semin, O. S. Parshakov, et al. Method for solving inverse Stefan problem to control ice wall state during shaft excavation, Perm. J. Petroleum and Mining Engineering, 16 (2017), 255267.
12.G. M. M. Reddy, M. Vynnycky and J. A. Cuminato, On efficient reconstruction of boundary data with optimal placement of the source points in MFS: application to inverse Stefan problems, Inverse Probl. Sci. En., 26 (2018), 12491279.
13.A. Boumenir, V. K. Tuan and N. Hoang, The recovery of a parabolic equation from measurements at a single point, Evol. Equ. Control The., 7 (2018), 197216.
14.N. L. Gol'dman, Inverse Stefan Problems, Dordrecht: Kluwer Academic, 1997.
15.N. L. Gol'dman, Properties of solutions of the inverse Stefan problem, Differ. Equations, 39 (2003), 6672.
16.N. L. Gol'dman, Onephase inverse Stefan problems with unknown nonlinear sources, Differ. Equations, 49 (2013), 680687.
17.N. L. Gol'dman, Investigation of mathematical models of onephase Stefan problems with unknown nonlinear coefficients, Eurasian Mathematical Journal, 8 (2017), 4859.
18.N. L. Gol'dman, Properties of solutions of parabolic equations with unknown coefficients, Differ. Equations, 47 (2011), 6068.
19.O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Soc., 1968.
20.M. Lees and M. H. Protter, Unique continuation for parabolic differential equations and inequalities, Duke Math. J., 28 (1961), 369383.
21.A. Friedman, Partial Differential Equations of Parabolic Type, New York: Prentice Hall, Englewood Cliffs, 1964.
22.M. Turkyilmazoglu, Stefan problems for moving phase change materials and multiple solutions, Int. J. Therm. Sci., 126 (2018), 6773.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)