AIMS Mathematics, 2019, 4(2): 316-326. doi: 10.3934/math.2019.2.316.

Research article

Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

Free surface flows over a successive obstacles with surface tension and gravity effects

1 Department of Mathematics, Biskra University, Biskra, Algeria
2 Department of Mathematics, M’sila University, M’sila, Algeria

## Abstract    Full Text(HTML)    Figure/Table    Related pages

The problem of steady two-dimensional flow of a fluid of finite depth over a successive obstacles is considered. Both gravity and surface tension are taken into account in the dynamic boundary conditions. The fluid is assumed to be inviscid, incompressible and the flow to be irrotational. The flow is characterized by the two parameters, the Froude number Fr and the inverse Weber number δ. The fully non-linear problem is solved numerically by using the boundary integral equation technique. The numerical solutions for sub-critical (Fr < 1) and supercritical (Fr > 1) are presented for various values of Fr and δ. The effects of surface tension and gravity on the shape of the free surface are discussed, and solution diagrams for all flow regimes are presented.
Figure/Table
Supplementary
Article Metrics

Citation: Abdelkader Laiadi, Abdelkrim Merzougui. Free surface flows over a successive obstacles with surface tension and gravity effects. AIMS Mathematics, 2019, 4(2): 316-326. doi: 10.3934/math.2019.2.316

References

• 1. M. B. Abd-el-Malek, S. N. Hanna and M. T. Kamel, Approximate solution of gravity flow from a uniform channel over triangular bottom for large Froude number, Appl. Math. Model., 15 (1991), 25-32.
• 2. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967.
• 3. S. R. Belward, Fully non-linear flow over successive obstacles: Hydraulic fall and supercritical flows, J. Austral. Math. Soc. Ser. B, 40 (1999), 447-458.
• 4. S. R. Belward and L. K. Forbes, Fully non-linear two-layer flow over arbitrary topography, J. Eng. Math., 27 (1993), 419-432.
• 5. B. J. Binder, Steady two-dimensional free surface flow past disturbances in an open channel: Solutions of the Korteweg-De Vries equation and analysis of the weakly nonlinear phase space, Fluids, 4 (2019), 24. Available from: https://www.mdpi.com/2311-5521/4/1/24.
• 6. B. J. Binder, M. G. Blyth and S. W. Mccue, Free-surface flow past arbitrary topography and an inverse approach for wave free solutions, IMA J. Appl. Math., 78 (2013), 685-696.
• 7. B. J. Binder, F. Dias and J. M. Vanden-Broeck, Influence of rapid changes in a channel bottom on free surface flows, IMA J. Appl. Math., 73 (2008), 254-273.
• 8. B. J. Binder, F. Dias and J. M. Vanden-Broeck, Steady free surface flow past an uneven channel bottom, Theor. Comput. Fluid Dyn., 20 (2006), 125-144.
• 9. B. J. Binder, J. M. Vanden-Broeck and F. Dias, Forced solitary waves and fronts past submerged obstacles, Chaos, 15 (2005), 037106.
• 10. F. Dias and J. M. Vanden-Broeck, Generalised critical free surface flows, J. Eng. Math., 42 (2002), 291-301.
• 11. F. Dias and J. M. Vanden-Broeck, Open channel flows with submerged obstructions, J. Fluid. Mech., 206 (1989), 155-170.
• 12. L. K. Forbes, Free-surface flow over a semicircular obstruction, including the influence of gravity and surface tension, J. Fluid. Mech., 127 (1983), 283-297.
• 13. L. K. Forbes and L. W. Schwartz, Free-surface flow over a semicircular obstruction, J. Fluid. Mech., 114 (1982), 299-314.
• 14. S. Grandison and J. M. Vanden-Broeck, Truncation approximations for gravity-capillary free surface flows, J. Eng. Math., 54 (2006), 89-97.
• 15. P. Guayjarernpanishk and J. Asavanant, Free-surface flows over an obstacle: Problem revisited, In: Bock H., Hoang X., Rannacher R., Schlöder J. Editors, Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg, (2012), 139-151.
• 16. S. N. Hanna, Influence of surface tension on free surface flow over a polygonal and curved obstruction, J. Comput. Appl. Math., 51 (1994), 357-374.
• 17. R. J. Holmes and G. C. Hoking, A note on waveless subcritical flow past symmetric bottom topography, Euro. J. Appl. Math., 28 (2016), 562-575.
• 18. R. J. Holmes, G. C. Hoking, L. K. Forbes, et al. Waveless subcritical flow past symmetric bottom topography, Euro. J. Appl. Math., 24 (2013), 213-230.
• 19. A. C. King and M. I. G. Bloor, Free-surface flow of a stream obstructed by an arbitrary bed topography, Q. J. Mech. Appl. Math., 43 (1990), 87-106.
• 20. C. Lustri, S. W. Mccue and B. J. Binder, Free surface flow past topography: A beyond-all-orders approach, Euro. J. Appl. Math., 23 (2012), 441-467.
• 21. A. Merzougui and A. Laiadi, Free surface flow over a triangular depression, TWMS J. App. Eng. Math., 4 (2014), 67-73.
• 22. R. Pethiyagoda, T. J. Moroney and S. W. Mccue, Efficient computation of two-dimensional steady free surface flows, Int. J. Numer. Meth. Fluids, (2017), 1-20.
• 23. L. J. Pratt, On non-linear flow with multiple obstructions, J. Atmos. Sci., 41 (1984), 1214-1225.
• 24. J. M. Vanden-Broeck, Gravity-Capillary Free Surface Flows, New York: Cambridge University Press, 2010.