AIMS Mathematics, 2019, 4(2): 242-253. doi: 10.3934/math.2019.2.242.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

A new approach to generate all Pythagorean triples

1 Department of Information Technology, Melbourne Polytechnic, VIC, Australia
2 Department of Mathematics and Statistics, Curtin University, Perth (WA), Australia

This paper revisits the topic of Pythagorean triples with a different perspective. While several methods have been explored to generate Pythagorean triples, none of them is complete in terms of generating all the triples without repetitions. Indeed, many existing methods concentrate on generating primitive triples but do not cater to non-primitives. By contrast, the approach presented in this paper to parameterise the Pythagorean triples generates all of the triples in a unique way, i.e., without repetitions. We also explore the relation of this new parameterisation with the Pythagorean family of odd triples and with the Platonic family of even triples.
  Article Metrics

Keywords Pythagorean triples; Diophantine equations; Euclidean triples; Platonic triples; right angle triangles

Citation: Anthony Overmars, Lorenzo Ntogramatzidis, Sitalakshmi Venkatraman. A new approach to generate all Pythagorean triples. AIMS Mathematics, 2019, 4(2): 242-253. doi: 10.3934/math.2019.2.242


  • 1.L. E. Dickson. History of The Theory of Numbers: Diophantine Analysis, 2Eds., London: Dover Publications, 2005.
  • 2.B. Berggren, Pytagoreiska trianglar, Elementa: Tidskrift för elementär matematik, fysik och kemi, 17 (1934): 129-139 (in Swedish).
  • 3.F. J. M. Barning, Over pythagorese en bijna-pythagorese driehoeken en een generatieproces met behulp van unimodulaire matrices (in Dutch), Math. Centrum Amsterdam Afd. Zuivere Wisk. ZW-011 (1963): 37 pages.
  • 4.E. Maor, The Pythagorean Theorem: A 4,000-Year History, Princeton, New Jersey: Princeton University Press, 2007.
  • 5.A. Proclus, Commentary on the First Book of Euclid's Elements, English translation by G. R. Morrow, Princeton, NJ: Princeton University Press, 1970.
  • 6.R. A. Trivedi, S. A. Bhanotar, Pythagorean Triplets - Views, Analysis and Classification, IIOSR J. Math., 11 (2015), 54-63.
  • 7.W. Sierpinski, Pythagorean triangles, Scripta Mathematica Studies, No. 9, New York: Yeshiva University, 1962.
  • 8.D. Cass, P. J. Arpaia, Matrix generation of Pythagorean n-tuples, P. Am. Math. Soc., 109 (1990), 1-7.
  • 9.S. Frisch, L. Vasertein, Parameterization of Pythagorean triples by a single triple of polynomials, J. Pure Appl. Algebra, 212 ( 2008), 271-274.
  • 10.L. Vasertein, T. Sakkalis, S. Frisch, Polynomial parameterization of Pythagorean tuples, Int. J. Number Theory, 6 (2010), 1261-1272.    
  • 11.J. Beery, J. A. Stedall, Thomas Harriot's Doctrine of Triangular Numbers: The "Magisteria Magna", European Mathematical Society, 2009.
  • 12.J. Rukavicka, Dickson's method for generating Pythagorean triples revisited, Eur. J. Pure Appl. Math., 6 (2013), 363-364.
  • 13.E. Asmaryan, On the generation of Pythagorean triples and representation of integers as a difference of two squares, Int. J. Math. Comput. Sci., 13 (2018), 59-71.
  • 14.T. Roy, F. J. Sonia, A direct method to generate Pythagorean triples and its generalization to Pythagorean quadruples and n-tuples, arXiv:1201.2145 [math.NT], (2012), 1-11.
  • 15.A. Overmars, L. Ntogramatzidis, A new parameterisation of Pythagorean triples in terms of odd and even series, arXiv:1504.03163 [math.HO], (2015), 1-9.
  • 16.J. H. Barnett, Generating Pythagorean triples: the methods of Pythagoras and of Plato via Gnomons, Number Theory, 7 (2017).
  • 17.J. H. Silverman, A Friendly Introduction to Number Theory, Prentice Hall, 1997.
  • 18.W. Wyss, Perfect Parallelograms, Am. Math. Mon., 119 (2012), 513-515.    
  • 19.A. F. Horadam, Fibonacci number triples, Am. Math. Mon., 68 (1961), 751-753.    
  • 20.D. McCullough, Height and excess of Pythagorean triples, Math. Mag., 78 (2005), 26-44.    
  • 21.R. Guy, Unsolved Problems in Number Theory, 3Eds., New York: Springer, 2004.
  • 22.A. Hall, Genealogy of Pythagorean triads, Math. Gaz., 54 (1970), 377-379.
  • 23.T. Sakkalis, R. T. Farouki, Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3, J. Comput. Appl. Math., 236 (2012), 4375-4382.    
  • 24.R. Amato, A characterization of Pythagorean triples, JP J. Algebra, Number Theory Appl., 39 (2017), 221-230.    
  • 25.A. Overmars, S. Venkatraman, Pythagorean-Platonic lattice method for finding all co-prime right angle triangles, Int. J. Comput. Inf. Eng., 11 (2017), 1192-1195.
  • 26.A. Overmars, S. Venkatraman, A new method of golden ratio computation for faster cryptosystems, Proceedings of IEEE Cybersecurity and Cyberforensics Conference, London (UK), 21-23 Nov. 2017.
  • 27.A. Overmars, S. Venkatraman, S. Parvin, Revisiting square roots with a fast estimator, London J. Res. Comput. Sci. Technol., 18 (2018), Compilation 10.
  • 28.S. Kak, M. Prabhu, Cryptographic applications of primitive Pythagorean triples, Cryptologia, 38 (2014), 215-222.    
  • 29.T. Omland, How many Pythagorean triples with a given inradius? J. Number Theory, 170 (2017), Supplement C: 1-2.


This article has been cited by

  • 1. Anthony Overmars, Sitalakshmi Venkatraman, A Fast Factorisation of Semi-Primes Using Sum of Squares, Mathematical and Computational Applications, 2019, 24, 2, 62, 10.3390/mca24020062
  • 2. Anthony Overmars, , Modern Cryptography - Theory, Technology, Adaptation and Integration [Working Title], 2019, 10.5772/intechopen.84852

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved