Research article Topical Sections

Processing of hybrid laminates integrating ZrB2/SiC and SiC layers

  • Received: 04 May 2020 Accepted: 17 August 2020 Published: 24 August 2020
  • Tape casting technique was used to develop hybrid laminates constituting by SiC and ZrB2–SiC layers; the main aim is obtaining a structure which integrate the unique properties of these materials and potentially extent their application temperature range. Multilayer with ZrB2–SiC layers stacked in between SiC ones were successfully processed. Thin cracks propagated in the composite layers without affecting SiC ones; their formation was due to residual stresses developed in the two materials because of the differences in their shrinkage and coefficients of thermal expansion. However, these cracks did not significantly affect the material properties: relative density, elastic modulus and flexural strength of hybrid laminates was indeed only slightly lower than those of laminates made up of layers with the same composition.

    Citation: Elisa Padovano, Francesco Trevisan, Sara Biamino, Claudio Badini. Processing of hybrid laminates integrating ZrB2/SiC and SiC layers[J]. AIMS Materials Science, 2020, 7(5): 552-564. doi: 10.3934/matersci.2020.5.552

    Related Papers:

  • Tape casting technique was used to develop hybrid laminates constituting by SiC and ZrB2–SiC layers; the main aim is obtaining a structure which integrate the unique properties of these materials and potentially extent their application temperature range. Multilayer with ZrB2–SiC layers stacked in between SiC ones were successfully processed. Thin cracks propagated in the composite layers without affecting SiC ones; their formation was due to residual stresses developed in the two materials because of the differences in their shrinkage and coefficients of thermal expansion. However, these cracks did not significantly affect the material properties: relative density, elastic modulus and flexural strength of hybrid laminates was indeed only slightly lower than those of laminates made up of layers with the same composition.


    加载中


    [1] Takeuchi Y, Park C, Noborio K, et al. (2010) Heat transfer in SiC compact heat exchanger. Fusion Eng Des 85: 1266-1270. doi: 10.1016/j.fusengdes.2010.03.017
    [2] Steen M, Ranzani L (2000) Potential of SiC as a heat exchanger material in combined cycle plant. Ceram Int 26: 849-854. doi: 10.1016/S0272-8842(00)00027-4
    [3] Casady JB, Johnson RW (1996) Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid State Electron 39: 1409-1422. doi: 10.1016/0038-1101(96)00045-7
    [4] Joshi RP, Neudeck PG, Fazi C (2000) Analysis of the temperature dependent thermal conductivity of silicon carbide for high temperature applications. J Appl Phys 88: 265-269. doi: 10.1063/1.373651
    [5] Pachaiyappan R, Gopinath R, Gopalakannan S (2015) Processing techniques of a silicon carbide heat exchanger and its capable properties-A review. Appl Mech Mater 787: 513-517. doi: 10.4028/www.scientific.net/AMM.787.513
    [6] Gulbransen EA, Jansson SA (1972) The high-temperature oxidation, reduction, and volatilization reactions of silicon and silicon carbide. Oxid Met 4: 181-201. doi: 10.1007/BF00613092
    [7] Badini C, Liedtke V, Euchberger G, et al. (2012) Self passivating behavior of multilayer SiC under simulated atmospheric re-entry conditions. J Eur Ceram Soc 32: 4435-4445. doi: 10.1016/j.jeurceramsoc.2012.07.031
    [8] Jacobson NS, Fox DS, Opila EJ (1998) High temperature oxidation of ceramic matrix composites. Pure Appl Chem 70: 493-500. doi: 10.1351/pac199870020493
    [9] Squire TH, Marschall J (2010) Material property requirements for analysis and design of UHTC components in hypersonic applications. J Eur Ceram Soc 30: 2239-2251. doi: 10.1016/j.jeurceramsoc.2010.01.026
    [10] Levine SR, Opila EJ, Halbig MC, et al. (2002) Evaluation of ultra-high temperature ceramics foraeropropulsion use. J Eur Ceram Soc 22: 2757-2767. doi: 10.1016/S0955-2219(02)00140-1
    [11] Wuchina E, Opila E, Opeka M, et al. (2007) UHTCs: Ultra-high temperature ceramic materials for extreme environment applications. Electrochem Soc Interface 16: 30-36.
    [12] Neuman EW, Hilmas GE, Fahrenholtz WG (2013) Strength of zirconium diboride to 2300 ℃. J Am Ceram Soc 96: 47-50. doi: 10.1111/jace.12114
    [13] Hu P, Gui K, Yang Y, et al. (2013) Effect of SiC content on the ablation and oxidation behavior of ZrB2-based ultra high temperature ceramic composites. Materials 6: 1730-1744. doi: 10.3390/ma6051730
    [14] Monteverde F, Bellosi A (2002) Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride. Scripta Mater 46 223-228.
    [15] Padovano E, Badini C, Celasco E, et al. (2015) Oxidation behavior of ZrB2/SiC laminates: Effect of composition on microstructure and mechanical strength. J Eur Ceram Soc 35: 1699-1714. doi: 10.1016/j.jeurceramsoc.2014.12.029
    [16] Daudt NF, Hackemüller FJ, Bram M (2019) Manufacturing of Ti-10Nb based metal sheets by tape casting. Mater Lett 237: 161-164. doi: 10.1016/j.matlet.2018.11.109
    [17] Muralidharan MN, Sunny EK, Dayas KR, et al. (2011) Optimization of process parameters for the production of Ni-Mn-Co-Fe based NTC chip thermistors through tape casting route. J Alloys Compd 509: 9363-9371. doi: 10.1016/j.jallcom.2011.07.037
    [18] Tietz F, Buchkremer HP, Stöver D (2002) Components manufacturing for solid oxide fuel cells. Solid State Ionics 152-153: 373-381. doi: 10.1016/S0167-2738(02)00344-2
    [19] Barcena J, Lagos M, Agote I, et al. (2013) SMARTEES FP7 space project-towards a new TPS reusable concept for atmospheric eeentry from low earth orbit. 7th European Workshop on Thermal Protection System and Hot Structures.
    [20] Padovano E, Badini C, Biamino S, et al. (2013) Pressureless sintering of ZrB2-SiC composite laminates using boron and carbon as sintering aids. Adv Appl Ceram 112: 478-486. doi: 10.1179/1743676113Y.0000000119
    [21] Clegg WJ (1992) The fabrication and failure of laminar ceramic composites. Acta Metall Et Mater 40: 3085-3093. doi: 10.1016/0956-7151(92)90471-P
    [22] Zhang J, Huang R, Gu H, et al. (2005) High toughness in laminated SiC ceramics from aqueous tape casting. Scripta Mater 52: 381-385. doi: 10.1016/j.scriptamat.2004.10.026
    [23] Qin S, Jiang D, Zhang J, et al. (2003) Design, fabrication and properties of layered SiC/TiC ceramic with graded thermal residual stress. J Eur Ceram Soc 23: 1491-1497. doi: 10.1016/S0955-2219(02)00306-0
    [24] Prakash O, Sarkar P, Nicholson PS (1995) Crack deflection in ceramic/ceramic laminates with strong interfaces. J Am Ceram Soc 78: 1125-1127. doi: 10.1111/j.1151-2916.1995.tb08455.x
    [25] Lakshminarayanan R, Shetty DK, Cutler RA (1996) Toughening of layered ceramic composites with residua l surface compression. J Am Ceram Soc 79: 79-87. doi: 10.1111/j.1151-2916.1996.tb07883.x
    [26] Green DJ, Cai PZ, Messing GL (1999) Residual stresses in alumina-zirconia laminates. J Eur Ceram Soc 19: 2511-2517. doi: 10.1016/S0955-2219(99)00103-X
    [27] Chamberlain AL, Fahrenholtz WG, Hilmas GE (2006) Pressureless sintering of zirconium diboride. J Am Ceram Soc 89: 450-456. doi: 10.1111/j.1551-2916.2005.00739.x
    [28] Tripp WC, Graham HC (1971) Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800 ℃ to 1500 ℃. J Electrochem Soc 118: 1195-1199. doi: 10.1149/1.2408279
    [29] Chamberlain A, Fahrenholtz W, Hilmas G, et al. (2004) High-strength zirconium diboride-based ceramics. J Am Ceram Soc 87: 1170-1172. doi: 10.1111/j.1551-2916.2004.01170.x
    [30] Zhang SC, Hilmas GE, Fahrenholtz WG (2008) Pressureless sintering of ZrB2-SiC ceramics. J Am Ceram Soc 91: 26-32.
    [31] Biamino S, Antonini A, Eisenmenger-Sittner C, et al. (2010) Multilayer SiC for thermal protection system of space vehicles with decreased thermal conductivity through the thickness. J Eur Ceram Soc 30: 1833-1840. doi: 10.1016/j.jeurceramsoc.2010.01.040
    [32] Biamino S, Antonini A, Pavese M, et al. (2008) MoSi2 laminate processed by tape casting: Microstructure and mechanical properties' investigation. Intermetallics 16: 758-768. doi: 10.1016/j.intermet.2008.02.007
    [33] Sánchez-Herencia AJ, Baudín de la Lastra C (2009) Ceramic laminates with tailored residual stresses. Bol Soc Esp Ceram 48: 311-320.
    [34] Sglavo VM, Paternoster M, Bertoldi M (2005) Tailored residual stresses in high reliability alumina-mullite ceramic laminates. J Am Ceram Soc 88: 2826-2832. doi: 10.1111/j.1551-2916.2005.00479.x
    [35] Bermejo R, Pascual J, Lube T, et al. (2008) Optimal strength and toughness of Al2O3-ZrO2 laminates designed with external or internal compressive layers. J Eur Ceram Soc 28: 1575-1583. doi: 10.1016/j.jeurceramsoc.2007.11.003
    [36] Thompson MJ, Fahrenholtz WG, Hilmas GE (2012) Elevated temperature thermal properties of ZrB2 with carbon additions. J Am Ceram Soc 95: 1077-1085.
    [37] Hillman C, Suo Z, Lange FF (1996) Cracking of laminates subjected to biaxial tensile stresses. J Am Ceram Soc 79: 2127-2133. doi: 10.1111/j.1151-2916.1996.tb08946.x
    [38] Spowart JE, Déve HE (2000) Compressive failure of metal matrix composites, In: Kelly A, Zweben C, Comprehensive Composite Materials, Elsevier, 3: 221-245.
    [39] Mari D, Krawitz AD, Richardson JW, et al. (1996) Residual stress in WC-Co measured by neutron diffraction. Mater Sci Eng A-Struct 209: 197-205. doi: 10.1016/0921-5093(95)10147-0
    [40] Shackelford JF, Alexander W (2001) CRC Materials Science and Engineering Handbook, 4 Eds., New York: CRC press, 49: 1557-1558.
    [41] Bansal PN (2006) Handbook of Ceramic Composites, Springer Science & Business Media, 200.
    [42] Zhang X, Zhou P, Hu P, et al. (2011) Toughening of laminated ZrB2-SiC ceramics with residual surface compression. J Eur Ceram Soc 31: 2415-2423. doi: 10.1016/j.jeurceramsoc.2011.05.024
    [43] Guo SQ (2009) Densification of ZrB2-based composites and their mechanical and physical properties: A review. J Eur Ceram Soc 29: 995-1011. doi: 10.1016/j.jeurceramsoc.2008.11.008
    [44] Jacobson NS, Myers DL (2011) Active oxidation of SiC. Oxid Met 75: 1-25. doi: 10.1007/s11085-010-9216-4
    [45] Niu Y, Wang H, Li H, et al. (2013) Dense ZrB2-MoSi2 composite coating fabricated by low pressure plasma spray (LPPS). Ceram Int 39: 9773-9777. doi: 10.1016/j.ceramint.2013.05.038
    [46] Monteverde F, Savino R (2007) Stability of ultra-high-temperature ZrB2-SiC ceramics under simulated atmospheric re-entry conditions. J Eur Ceram Soc 27: 4797-4805. doi: 10.1016/j.jeurceramsoc.2007.02.201
    [47] Karlsdottir SN, Halloran JW, Henderson CE (2007) Convection patterns in liquid oxide films on ZrB2-SiC composites oxidized at a high temperature. J Am Ceram Soc 90: 2863-2867. doi: 10.1111/j.1551-2916.2007.01784.x
    [48] Fahrenholtz WG (2007) Thermodynamic analysis of ZrB2-SiC oxidation: Formation of a SiC-depleted region. J Am Ceram Soc 90: 143-148. doi: 10.1111/j.1551-2916.2006.01329.x
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(712) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog