Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Variation of the electronic properties of the silicene nanosheet passivated by hydrogen atoms: A DFT investigation

1 Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
2 Department of Mechanical Engineering, Langroud Branch, Islamic Azad University, Langroud, Iran
3 Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

Using the first-principles calculations, the electronic properties of hydrogenated silicene (H-silicene) has been investigated. The influence of the hydrogenation on the bandgap and I-V characteristics of the silicene is evaluated. It is shown that the H-silicene has an indirect band gap, with the value of 2.33 eV while silicene nanosheet represents a semi-metallic behavior with a zero band gap and Dirac cone at the Fermi level. Some unique properties of H-silicene is observed which make it ideal for variety of applications in designing spintronic devices, optoelectronics devices, transparent conducting electrodes, and integrated circuits.
  Article Metrics


1. Cao Y, Fatemi V, Fang S, et al. (2018) Unconventional superconductivity in magic-angle graphene superlattices. Nature 556: 43-50.    

2. Rouhi S, Ansari R (2012) Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E 44: 764-772.    

3. Silva EF, Barbosa ALR, Hussein MS, et al. (2018) Tunable χ/ρτ Symmetry in Noisy Graphene. Braz J Phys 48: 322-329.    

4. Zhang H, Chhowalla M, Liu Z (2018) 2D nanomaterials: graphene and transition metal dichalcogenides. Chem Soc Rev 47: 3015-3017.    

5. Novoselov KS, Geim AK, Morozov SV, et al. (2004) Electric field effect in atomically thin carbon films. Science 306: 666-669.    

6. Mishra R, Panwar R, Singh D (2018) Equivalent circuit model for the design of frequency-selective, terahertz-band, graphene-based metamaterial absorbers. IEEE Magn Lett 9: 1-5.

7. Joel I, Wang J, Rodan-Legrain D, et al. (2019) Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat nanotechnol 14: 120-125.

8. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat nanotechnol 3: 270-274.    

9. Lee H, Ihm J, Cohen ML, et al. (2010) Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano lett 10: 793-798.    

10. Schedin F, Geim AK, Morozov SV, et al. (2007) Detection of individual gas molecules adsorbed on graphene. Nat mater 6: 652-655.    

11. Castro Neto AH, Guinea F, Peres N (2009) MR; Novoselov, KS; Geim, AK Rev. Mod Phys 81: 109-162.    

12. Hu T, Gerber IC (2013) Theoretical study of the interaction of electron donor and acceptor molecules with graphene. J Phys Chem C 117: 2411-2420.

13. Ni S, Li Z, Yang J (2012) Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping. Nanoscale 4: 1184-1189.    

14. Jappor HR, Jaber AS (2016) Electronic properties of CO and CO2 adsorbed silicene/graphene nanoribbons as a promising candidate for a metal-free catalyst and a gas sensor. Sensor Lett 14: 989-995.

15. Jappor HR (2017) Electronic and structural properties of gas adsorbed graphene-silicene hybrid as a gas sensor. J Nanoelectronic Optoe 12: 742-747.    

16. Zhang H, He X, Zhao M, et al. (2012). Tunable hydrogen separation in sp-sp2 hybridized carbon membranes: a first-principles prediction. J Phys Chem C 116: 16634-16638.    

17. Balog R, Jørgensen B, Nilsson L, et al. (2010) Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature mater 9: 315-319.

18. Vogt P, De Padova P, Quaresima C, et al. (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev lett 108: 155501.

19. Li L, Lu SZ, Pan J, et al. (2014) Buckled germanene formation on Pt (111). Adv Mater 26: 4820-4824.    

20. Dávila ME, Xian L, Cahangirov S, et al. (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16: 095002.    

21. Zhu F, Chen WJ, Xu Y, et al. (2015) Epitaxial growth of two-dimensional stanene. Nature mater 14: 1020-1025.    

22. Takahashi M (2017) Flat building blocks for flat silicene. Sci Rep 7: 10855.    

23. Oughaddou H, Enriquez H, Tchalala MR, et al. (2015) Silicene, a promising new 2D material. Prog Surf Sci 90: 46-83.    

24. Jose D, Datta A (2013) Structures and chemical properties of silicene: unlike graphene. Accounts Chem Res 47: 593-602.

25. Sun M, Ren Q, Wang S, et al. (2016) Electronic properties of Janus silicene: new direct band gap semiconductors. J Phys D Appl Phys 49: 445305.

26. Ezawa M (2018) Electronic and topological properties of silicene, germanene and stanene. In: Vogt P, Lay GL, Silicene Prediction, Synthesis, Application, Cham: Springer, 43-71.

27. Li X, Mullen JT, Jin Z, et al. (2013) Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys Rev B 87: 115418.    

28. Padilha JE, Pontes RB (2015) Free-standing bilayer silicene: the effect of stacking order on the structural, electronic, and transport properties. J Phys Chem C 119: 3818-3825.    

29. Iordanidou K, Houssa M, van den Broek B, et al. (2016) Impact of point defects on the electronic and transport properties of silicene nanoribbons. J Phys Condens Mat 28: 035302.

30. Chowdhury S, Jana D (2016) A theoretical review on electronic, magnetic and optical properties of silicene. Rep Prog Phys 79: 126501.    

31. Wakabayashi K, Takane Y, Yamamoto M, et al. (2009) Electronic transport properties of graphene nanoribbons. New J Phys 11: 095016.    

32. Sangwan VK, Hersam MC (2018) Electronic transport in two-dimensional materials. Annu Rev Phys Chem 69: 299-325.    

33. Shakouri K, Simchi H, Esmaeilzadeh M, et al. (2015) Tunable spin and charge transport in silicene nanoribbons. Phys Rev B 92: 035413.    

34. Lu WT, Li YF, Tian HY (2018) Spin- and Valley-Dependent electronic structure in silicene under periodic potentials. Nanoscale Res Lett 13: 84.    

35. Sahin H, Peeters FM (2013) Adsorption of alkali, alkaline-earth, and 3 d transition metal atoms on silicene. Phys Rev B 87: 085423.

36. Lew Yan Voon LC, Sandberg E, Aga RS, et al. (2010) Hydrogen compounds of group-IV nanosheets. Appl Phys Lett 97: 163114.    

37. Houssa M, Scalise E, Sankaran K, et al. (2011). Electronic properties of hydrogenated silicene and germanene. Appl Phys Lett 98: 223107.

38. Ding Y, Wang Y (2012) Electronic structures of silicene fluoride and hydride. Appl Phys Lett 100: 083102.    

39. Singh R (2018) Spin-orbit coupling in graphene, silicene and germanene: dependence on the configuration of full hydrogenation and fluorination. B Mater Sci 41: 158.    

40. Koski KJ, Cui Y (2013) The new skinny in two-dimensional nanomaterials. ACS Nano 7: 3739-3743.    

41. Elias DC, Nair RR, Mohiuddin TMG, et al. (2009) Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323: 610-613.    

42. Pulci O, Gori P, Marsili M, et al. (2012) Strong excitons in novel two-dimensional crystals: silicane and germanane. EPL Europhys Lett 98: 37004.    

43. Nagarajan V, Chandiramouli R (2017) First-principles investigation on interaction of NH3 gas on a silicene nanosheet molecular device. IEEE T Nanotechnol 16: 445-452.    

44. Zhang X, Zhang D, Xie F, et al. (2017) First-principles study on the magnetic and electronic properties of Al or P doped armchair silicene nanoribbons. Phys Lett A 381: 2097-2102.    

45. Soler JM, Artacho E, Gale JD, et al. (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Mat 14: 2745.

46. Büttiker M, Imry Y, Landauer R, et al. (1985). Generalized many-channel conductance formula with application to small rings. Phys Rev B 31: 6207.

47. Rhodes P (1950) Fermi-Dirac functions of integral order. Proc R Soc Lond 204: 396-405.    

48. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23: 5048.    

49. Zheng J, Zhou J, Qin R, et al. (2011) Tunable bandgap in silicene and germanene. Nano Lett 12: 113-118.

50. Osborn TH, Farajian AA, Pupysheva OV, et al. (2011) Ab initio simulations of silicene hydrogenation. Chem Phys Lett 511: 101-105.    

51. Drummond ND, Zolyomi V, Fal'Ko VI (2012) Electrically tunable band gap in silicene. Phys Rev B 85: 075423.    

52. Zhang X, Xie H, Hu M, et al. (2014) Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Phys Rev B 89: 054310.    

53. Wang XQ, Li HD, Wang JT (2012) Induced ferromagnetism in one-side semihydrogenated silicene and germanene. Phys Chem Chem Phys 14: 3031-3036.    

54. Akinwande D, Petrone N, Hone J (2014) Two-dimensional flexible nanoelectronics. Nat Commun 5: 5678.    

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved