Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Variation of the electronic properties of the silicene nanosheet passivated by hydrogen atoms: A DFT investigation

1 Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
2 Department of Mechanical Engineering, Langroud Branch, Islamic Azad University, Langroud, Iran
3 Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

Using the first-principles calculations, the electronic properties of hydrogenated silicene (H-silicene) has been investigated. The influence of the hydrogenation on the bandgap and I-V characteristics of the silicene is evaluated. It is shown that the H-silicene has an indirect band gap, with the value of 2.33 eV while silicene nanosheet represents a semi-metallic behavior with a zero band gap and Dirac cone at the Fermi level. Some unique properties of H-silicene is observed which make it ideal for variety of applications in designing spintronic devices, optoelectronics devices, transparent conducting electrodes, and integrated circuits.
  Article Metrics

Keywords density functional theory (DFT); silicene; hydrogenation; electronic properties

Citation: Hosein Alavi-Rad, Azadeh Kiani-Sarkaleh, Saeed Rouhi, Abbas Ghadimi. Variation of the electronic properties of the silicene nanosheet passivated by hydrogen atoms: A DFT investigation. AIMS Materials Science, 2019, 6(6): 1010-1019. doi: 10.3934/matersci.2019.6.1010


  • 1. Cao Y, Fatemi V, Fang S, et al. (2018) Unconventional superconductivity in magic-angle graphene superlattices. Nature 556: 43-50.    
  • 2. Rouhi S, Ansari R (2012) Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E 44: 764-772.    
  • 3. Silva EF, Barbosa ALR, Hussein MS, et al. (2018) Tunable χ/ρτ Symmetry in Noisy Graphene. Braz J Phys 48: 322-329.    
  • 4. Zhang H, Chhowalla M, Liu Z (2018) 2D nanomaterials: graphene and transition metal dichalcogenides. Chem Soc Rev 47: 3015-3017.    
  • 5. Novoselov KS, Geim AK, Morozov SV, et al. (2004) Electric field effect in atomically thin carbon films. Science 306: 666-669.    
  • 6. Mishra R, Panwar R, Singh D (2018) Equivalent circuit model for the design of frequency-selective, terahertz-band, graphene-based metamaterial absorbers. IEEE Magn Lett 9: 1-5.
  • 7. Joel I, Wang J, Rodan-Legrain D, et al. (2019) Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat nanotechnol 14: 120-125.
  • 8. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat nanotechnol 3: 270-274.    
  • 9. Lee H, Ihm J, Cohen ML, et al. (2010) Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano lett 10: 793-798.    
  • 10. Schedin F, Geim AK, Morozov SV, et al. (2007) Detection of individual gas molecules adsorbed on graphene. Nat mater 6: 652-655.    
  • 11. Castro Neto AH, Guinea F, Peres N (2009) MR; Novoselov, KS; Geim, AK Rev. Mod Phys 81: 109-162.    
  • 12. Hu T, Gerber IC (2013) Theoretical study of the interaction of electron donor and acceptor molecules with graphene. J Phys Chem C 117: 2411-2420.
  • 13. Ni S, Li Z, Yang J (2012) Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping. Nanoscale 4: 1184-1189.    
  • 14. Jappor HR, Jaber AS (2016) Electronic properties of CO and CO2 adsorbed silicene/graphene nanoribbons as a promising candidate for a metal-free catalyst and a gas sensor. Sensor Lett 14: 989-995.
  • 15. Jappor HR (2017) Electronic and structural properties of gas adsorbed graphene-silicene hybrid as a gas sensor. J Nanoelectronic Optoe 12: 742-747.    
  • 16. Zhang H, He X, Zhao M, et al. (2012). Tunable hydrogen separation in sp-sp2 hybridized carbon membranes: a first-principles prediction. J Phys Chem C 116: 16634-16638.    
  • 17. Balog R, Jørgensen B, Nilsson L, et al. (2010) Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature mater 9: 315-319.
  • 18. Vogt P, De Padova P, Quaresima C, et al. (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev lett 108: 155501.
  • 19. Li L, Lu SZ, Pan J, et al. (2014) Buckled germanene formation on Pt (111). Adv Mater 26: 4820-4824.    
  • 20. Dávila ME, Xian L, Cahangirov S, et al. (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16: 095002.    
  • 21. Zhu F, Chen WJ, Xu Y, et al. (2015) Epitaxial growth of two-dimensional stanene. Nature mater 14: 1020-1025.    
  • 22. Takahashi M (2017) Flat building blocks for flat silicene. Sci Rep 7: 10855.    
  • 23. Oughaddou H, Enriquez H, Tchalala MR, et al. (2015) Silicene, a promising new 2D material. Prog Surf Sci 90: 46-83.    
  • 24. Jose D, Datta A (2013) Structures and chemical properties of silicene: unlike graphene. Accounts Chem Res 47: 593-602.
  • 25. Sun M, Ren Q, Wang S, et al. (2016) Electronic properties of Janus silicene: new direct band gap semiconductors. J Phys D Appl Phys 49: 445305.
  • 26. Ezawa M (2018) Electronic and topological properties of silicene, germanene and stanene. In: Vogt P, Lay GL, Silicene Prediction, Synthesis, Application, Cham: Springer, 43-71.
  • 27. Li X, Mullen JT, Jin Z, et al. (2013) Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys Rev B 87: 115418.    
  • 28. Padilha JE, Pontes RB (2015) Free-standing bilayer silicene: the effect of stacking order on the structural, electronic, and transport properties. J Phys Chem C 119: 3818-3825.    
  • 29. Iordanidou K, Houssa M, van den Broek B, et al. (2016) Impact of point defects on the electronic and transport properties of silicene nanoribbons. J Phys Condens Mat 28: 035302.
  • 30. Chowdhury S, Jana D (2016) A theoretical review on electronic, magnetic and optical properties of silicene. Rep Prog Phys 79: 126501.    
  • 31. Wakabayashi K, Takane Y, Yamamoto M, et al. (2009) Electronic transport properties of graphene nanoribbons. New J Phys 11: 095016.    
  • 32. Sangwan VK, Hersam MC (2018) Electronic transport in two-dimensional materials. Annu Rev Phys Chem 69: 299-325.    
  • 33. Shakouri K, Simchi H, Esmaeilzadeh M, et al. (2015) Tunable spin and charge transport in silicene nanoribbons. Phys Rev B 92: 035413.    
  • 34. Lu WT, Li YF, Tian HY (2018) Spin- and Valley-Dependent electronic structure in silicene under periodic potentials. Nanoscale Res Lett 13: 84.    
  • 35. Sahin H, Peeters FM (2013) Adsorption of alkali, alkaline-earth, and 3 d transition metal atoms on silicene. Phys Rev B 87: 085423.
  • 36. Lew Yan Voon LC, Sandberg E, Aga RS, et al. (2010) Hydrogen compounds of group-IV nanosheets. Appl Phys Lett 97: 163114.    
  • 37. Houssa M, Scalise E, Sankaran K, et al. (2011). Electronic properties of hydrogenated silicene and germanene. Appl Phys Lett 98: 223107.
  • 38. Ding Y, Wang Y (2012) Electronic structures of silicene fluoride and hydride. Appl Phys Lett 100: 083102.    
  • 39. Singh R (2018) Spin-orbit coupling in graphene, silicene and germanene: dependence on the configuration of full hydrogenation and fluorination. B Mater Sci 41: 158.    
  • 40. Koski KJ, Cui Y (2013) The new skinny in two-dimensional nanomaterials. ACS Nano 7: 3739-3743.    
  • 41. Elias DC, Nair RR, Mohiuddin TMG, et al. (2009) Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323: 610-613.    
  • 42. Pulci O, Gori P, Marsili M, et al. (2012) Strong excitons in novel two-dimensional crystals: silicane and germanane. EPL Europhys Lett 98: 37004.    
  • 43. Nagarajan V, Chandiramouli R (2017) First-principles investigation on interaction of NH3 gas on a silicene nanosheet molecular device. IEEE T Nanotechnol 16: 445-452.    
  • 44. Zhang X, Zhang D, Xie F, et al. (2017) First-principles study on the magnetic and electronic properties of Al or P doped armchair silicene nanoribbons. Phys Lett A 381: 2097-2102.    
  • 45. Soler JM, Artacho E, Gale JD, et al. (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Mat 14: 2745.
  • 46. Büttiker M, Imry Y, Landauer R, et al. (1985). Generalized many-channel conductance formula with application to small rings. Phys Rev B 31: 6207.
  • 47. Rhodes P (1950) Fermi-Dirac functions of integral order. Proc R Soc Lond 204: 396-405.    
  • 48. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23: 5048.    
  • 49. Zheng J, Zhou J, Qin R, et al. (2011) Tunable bandgap in silicene and germanene. Nano Lett 12: 113-118.
  • 50. Osborn TH, Farajian AA, Pupysheva OV, et al. (2011) Ab initio simulations of silicene hydrogenation. Chem Phys Lett 511: 101-105.    
  • 51. Drummond ND, Zolyomi V, Fal'Ko VI (2012) Electrically tunable band gap in silicene. Phys Rev B 85: 075423.    
  • 52. Zhang X, Xie H, Hu M, et al. (2014) Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Phys Rev B 89: 054310.    
  • 53. Wang XQ, Li HD, Wang JT (2012) Induced ferromagnetism in one-side semihydrogenated silicene and germanene. Phys Chem Chem Phys 14: 3031-3036.    
  • 54. Akinwande D, Petrone N, Hone J (2014) Two-dimensional flexible nanoelectronics. Nat Commun 5: 5678.    


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved