Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Carbon nanotubes agglomeration in reinforced composites: A review

1 Department of Mechanical Engineering, Bangladesh Army University of Science and Technology, Saidpur Cantonment, Saidpur-5310, Bangladesh
2 Department of Industrial and Production Engineering, Bangladesh Army University of Science and Technology, Saidpur Cantonment, Saidpur-5310, Bangladesh

Topical Section: Nanomaterials, nanoscience and nanotechnology

Carbon nano tubes (CNTs), comprising one dimensional (1D) carbon tubes that significantly strengthen the base matrix when added as a reinforcement element. It is light in weight and very low weight fractions (vol% or wt%) of well-dispersed CNTs enhance mechanical properties effectively. Due to its poor wettability during liquid mixing, CNTs reinforced composites are mostly prepared by solid-state processing, extrusion, hot pressing, etc. after premixing of the matrix and CNTs powders in nano size. Irrespective of the production routes, matrices, and chemical treatments, CNTs agglomerate within the matrix structure. That leads to dispersion problem of CNTs in matrix materials and weaken the properties of the composites. CNTs produce small clusters/agglomerates due to their high affinity and affect the texture of grain boundaries. This review discusses the effect of CNTs agglomerations in composites formation for various CNTs reinforced composites. The study covers the effect of vol%, wt%, and dispersion medium for reinforcement.
  Article Metrics

Keywords carbon nanotube; dispersion; agglomeration; clustering; CNTs properties

Citation: Robiul Islam Rubel, Md. Hasan Ali, Md. Abu Jafor, Md. Mahmodul Alam. Carbon nanotubes agglomeration in reinforced composites: A review. AIMS Materials Science, 2019, 6(5): 756-780. doi: 10.3934/matersci.2019.5.756


  • 1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56–58.    
  • 2. Zhu X, Zhao YG, Wu M, et al. (2016) Effect of initial aluminum alloy particle size on the damage of carbon nanotubes during ball milling. Materials 9: 173.    
  • 3. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61: 1899–1912.    
  • 4. Baksh SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites-a review. Int Mater Rev 55: 41–64.    
  • 5. Dai H (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500: 218–241.    
  • 6. Chu K, Guo H, Jia C, et al. (2010) Thermal properties of carbon nanotube–copper composites for thermal management applications. Nanoscale Res Lett 5: 868–874.    
  • 7. Sun Y (2010) Mechanical properties of carbon nanotube/metal composites [PhD's thesis]. University of Central Florida, USA.
  • 8. Garcia EJ, Hart AJ, Wardle BL, et al. (2007) Fabrication and nanocompression testing of aligned carbon-nanotube-polymer nanocomposites. Adv Mater 19: 2151–2156.    
  • 9. Yengejeh SI, Kazemi SA, Öchsner A (2017) Carbon nanotubes as reinforcement in composites: A review of the analytical, numerical and experimental approaches. Comput Mater Sci 136: 85–101.    
  • 10. Wardle BL (2009) Nanocomposites and nano-engineered composites reinforced with aligned carbon nanotubes. Proceedings of the 17th International Conference on Composite Materials, Edinburgh, UK, 27–31.
  • 11. Munir KS, Kingshott P, Wen C (2014) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy-a review. Crit Rev Solid State 40: 38–55.
  • 12. Khare R, Bose S (2005) Carbon nanotube based composites-a review. J Miner Mater Char Eng 4: 31–46.
  • 13. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite Science and Technology, Germany: Wiley-VCH, 1–75.
  • 14. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25: 630–645.    
  • 15. Yang BJ, Cho KJ, Kim GM, et al. (2014) Effect of CNT agglomeration on the electrical conductivity and percolation threshold of nanocomposites: a micromechanics-based approach. Comp Model Eng Sci 103: 343–365.
  • 16. Pan Y, Weng GJ, Meguid SA, et al. (2011) Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions. J Appl Phys 110: 123715.    
  • 17. Azarniya A, Safavi MS, Sovizi S, et al. (2017) Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites. Metals 7: 384.    
  • 18. Lyu H, Gao B, He F, et al. (2017) Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustain Chem Eng 5: 9568–9585.    
  • 19. Wang D, Chen L (2010) Temperature and pH-responsive ―smart‖ carbon nanotube dispersions. In: Balasubramanian K, Burghard M, Carbon Nanotubes: Methods and Protocols, 1 Ed., New York: Humana Press, 27–38.
  • 20. Schlagenhauf L, Nuesch F, Wang J (2014) Release of carbon nanotubes from polymer nanocomposites. Fibers 2: 108–127.    
  • 21. Methner M, Crawford C, Geraci C (2012) Evaluation of the potential airborne release of carbon nanofibers during the preparation, grinding, and cutting of epoxy-based nanocomposite material. J Occup Environ Hyg 9: 308–318.    
  • 22. Golanski L, Guiot A, Pras M, et al. (2012) Release-ability of nano fillers from different nanomaterials (toward the acceptability of nanoproduct). J Nanopart Res 14: 962.    
  • 23. Rashad M, Pan F, Tang A, et al. (2015) Development of magnesium-graphene nanoplatelets composite. J Compos Mater 49: 285–293.    
  • 24. Jiang LY, Huang Y, Jiang H, et al. (2006) A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J Mech Phys Solids 54: 2436–2452.    
  • 25. Hertel T, Walkup RE, Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B 58: 13870–13873.    
  • 26. Yamamoto T, Miyauchi Y, Motoyanagi J, et al. (2004) Improved bath sonication method for dispersion of individual single-walled carbon nanotubes using new triphenylene-based surfactant. Jpn J Appl Phys 47: 2000–2004.
  • 27. Subramanian J, Seetharaman S, Gupta M (2015) Processing and properties of aluminum and magnesium based composites containing amorphous reinforcement: a review. Metals 5: 743–762.    
  • 28. Ballóková B, Sülleiová K, Besterci M, et al. (2016) Micromechanisms of fracture of magnesium based composite after superplastic deformation. Powder Metall Prog 16: 117–122.    
  • 29. Lee JH, Rhee KY (2009) Silane treatment of carbon nanotubes and its effect on the tribological behavior of carbon nanotube/epoxy nanocomposites. J Nanosci Nanotechno 9: 6948–6952.
  • 30. Chen Y, Conway M, Fitzgerald J (2003) Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing. Appl Phys A 76: 633–636.
  • 31. Reich S, Thomsen C, Maultzsch (2004) Carbon nanotubes-basic concepts and physical properties. ChemPhysChem 5: 1914–1915.    
  • 32. Gonzalez-Domínguez JM, Maser W, Benito A, et al. (2008) Carbon nanotubes dispersion towards polymer integration. NanoSpain2008, Braga, Portugal.
  • 33. Inam F, Peijs T (2007) Re-agglomeration of carbon nanotubes in two-part epoxy system; influence of the concentration. Proceedings of the 5th International Bhurbhan Conference on Applied Science and Technology, Islamabad, Pakistan.
  • 34. Song WS (2016) Percolation, electrical conductivity, and emi shield analysis of CNT composites [BD's thesis]. Georgia Institute of Technology, USA.
  • 35. Deriabina O, Lebovka N, Bulavin L, et al. (2013) Regulation of dispersion of carbon nanotubes in a mixture of good and bad solvents. arXiv 1304.5679.
  • 36. Arai S, Saito T, Endo M (2010) Cu–MWCNT composite films fabricated by electrodeposition. J Electrochem Soc 157: D147–D153.    
  • 37. Smart SK, Ren WC, Cheng HM, et al. (2007) Shortened double-walled carbon nanotubes by high-energy ball milling. Int J Nanotechnol 4: 618–633.    
  • 38. Simões S, Viana F, Reis MAL, et al. (2016) Microstructural characterization of aluminum-carbon nanotube nanocomposites produced using different dispersion methods. Microsc Microanal 22: 725–732.    
  • 39. Simões S, Viana F, Reis MAL, et al. (2014) Improved dispersion of carbon nanotubes in aluminum composites. Compos Struct 108: 992–1000.    
  • 40. Rashad M, Pan F, Asif M, et al. (2015) Improved mechanical proprieties of ―magnesium based composites‖ with titanium-aluminum hybrids. J Magnesium Alloy 3: 1–9.    
  • 41. Lamura G, Andreone A, Yang Y, et al. (2007) High-crystalline single-and double-walled carbon nanotube mats grown by chemical vapor deposition. J Phys Chem C 111: 15154–15159.    
  • 42. Lott JZ (2009) Study of the network formation of carbon nanotubes in epoxy matrices for electrical conductivity improvement [PhD's thesis]. Technical University, Germany.
  • 43. Vallejo SS (2014) Development of carbon nanotube-reinforced nickel matrix composites: processing, microstructure and physical properties [PhD's thesis]. Saarland University, Germany.
  • 44. Pham VT, Bui HT, Tran BT, et al. (2011) The effect of sintering temperature on the mechanical properties of a Cu/CNT nanocomposite prepared via a powder metallurgy method. Adv Nat Sci Nanosci Nanotechnol 2: 015006.    
  • 45. Neubauer E, Kitzmantel M, Hulman M (2010) Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos Sci Technol 70: 2228–2236.    
  • 46. Tian L, Zheng L, Ren L, et al. (2018) Future prospects of carbon nanotubes reinforced metal matrix composite. Res Dev Material Sci 3: 226–228.
  • 47. Esawi AMK, Morsi K, Sayed A, et al. (2009) Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater Sci Eng A 508: 167–173.    
  • 48. Simões S, Viana F, Reis MAL, et al. (2017) Aluminum and nickel matrix composites reinforced by CNTs: dispersion/mixture by ultrasonication. Metals 7: 279.    
  • 49. Woo DJ, Bottolfson BA, Brewer LN, et al. (2014) Low temperature synthesis of carbon nanotube-reinforced aluminum metal composite powders using cryogenic milling. J Mater Res 29: 2644–2656.    
  • 50. Esawi AMK, Borady MAE (2008) Carbon nanotube-reinforced aluminum strips. Compos Sci Technol 68: 486–492.    
  • 51. Zare H, Toroghinejad MR, Meratian M (2012) Dispersion of multi walled carbon nanotubes in aluminum powders with ultrasonic and ball mill attrition. Proceedings of the International Conference on Mechanical, Automotive and Materials Engineering, Dubai, 218–220.
  • 52. Toozandehjani M, Matori KA, Ostovan F, et al. (2017) Carbon nanotubes reinforced aluminum matrix composites-A review of processing techniques. PJSRR 3: 70–92.
  • 53. Cha S, Kim KT, Arshad SN, et al. (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17: 1377–1381.    
  • 54. Nai, MH, Wei J, Gupta M (2014) Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites. Mater Des 60: 490–495.    
  • 55. Liu SY, Gao FP, Zhang QY, et al. (2010) Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing. T Nonferr Metal Soc 20: 1222–1227.    
  • 56. Malaki M, Xu W, Kasar AK, et al. (2019). Advanced metal matrix nanocomposites. Metals 9: 330.
  • 57. Park Y, Cho K, Park I, et al. (2011) Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes. Procedia Eng 10: 1446–1450.    
  • 58. Umma A, Maleque MA, Iskandar IY, et al. (2012) Carbon nano tube reinforced aluminium matrix nano-composite: a critical review. AJBAS 6: 69–75.
  • 59. Dey A, Pandey KM (2015) Magnesium metal matrix composites-A review. Rev Adv Mater Sci 42: 58–67.
  • 60. Yamanaka S, Gonda R, Kawasaki A, et al. (2007) Fabrication and thermal properties of carbon nanotube/nickel composite by spark plasma sintering method. Mater Trans 48: 2506–2512.    
  • 61. Stahl H, Appenzeller J, Martel R, et al. (2000) Intertube coupling in ropes of single-wall carbon nanotubes. Phys Rev Lett 85: 5186–5189.    
  • 62. Hwang JY, Singh ARP, Banerjee R, et al. (2009) Processing and thermal conductivity of carbon nanotube-reinforced nickel matrix composites. Proceedings of the ASME 2009 Heat Transfer Summer Conference Collocated with the InterPACK09 and 3rd Energy Sustainability Conferences, San Francisco, USA.
  • 63. Pham Q, Jeong YG, Yoon SC, et al. (2007) Carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing. Mater Sci Forum 534–536: 245–248.
  • 64. Pham Q, Jeong YG, Hong SH, et al. (2006) Equal channel angular pressing of carbon nanotube reinforced metal matrix nanocomposites. Key Eng Mater 326–328: 325–328.
  • 65. Yoo SJ, Han SH, Kim WJ (2012) Magnesium matrix composites fabricated by using accumulative roll bonding of magnesium sheets coated with carbon–nanotube-containing aluminum powders. Scripta Mater 67: 129–132.    
  • 66. Zare Y (2016) Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Part A-Appl S 84: 158–164.    
  • 67. Akinwekomi AD, Law WC, Choy MT, et al. (2018) Processing and characterisation of carbon nanotube-reinforced magnesium alloy composite foams by rapid microwave sintering. Mater Sci Eng A 726: 82–92.    
  • 68. Vedabouriswaran G, Aravindan S (2018) Development and characterization studies on magnesium alloy (RZ 5) surface metal matrix composites through friction stir processing. J Magnes Alloy 6: 145–163.    
  • 69. Tu JP, Yang YZ, Wang LY, et al. (2001) Tribological properties of carbon-nanotube-reinforced copper composites. Tribol Lett 10: 225–228.    
  • 70. He C, Zhao N, Shi C, et al. (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19: 1128–1132.    
  • 71. Wang H, Zhang ZH, Hu ZY, et al. (2016) Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes. Sci Rep 6: 26258.    
  • 72. Xiong Y, Chen X (2016) Carbon nanotube reinforced Cu matrix composites by hot pressing for CNTs embedded composite particles. Academia J Sci Res 4: 075–080.
  • 73. Javadi AH, Mirdamadi S, Faghisani MA, et al. (2011) Investigation of new method to achieve well dispersed multiwall carbon nanotubes reinforced Al matrix composites. Int J Mate Metall Eng 5: 906–912.
  • 74. Deng C, Zhang X, Wang DZ, et al. (2007) Preparation and characterization of carbon nanotubes/aluminum matrix. Mater Lett 61: 1725–1728.    
  • 75. Bakshi SR, Singh V, Seal S, et al. (2009) Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf Coat Tech 203: 1544–1554.    
  • 76. Ostovan F, Matori KA, Toozandehjani M, et al. (2016) Nanomechanical behavior of multi-walled carbon nanotubes particulate reinforced aluminum nanocomposites prepared by ball milling. Materials 9: 140.    
  • 77. Noguchi T, Magario A, Fukazawa S, et al. (2004) Carbon nanotube/aluminium composites with uniform dispersion. Mater Trans 45: 602–604.    
  • 78. Kandeel A, Etman M, Sharara AM, et al. (2010) Effect of carbon nanotubes (CNTs) on the physicomechanical properties of magnesium oxychloride cement pastes. Proceedings of the International Conference On Nano-Technology for Green and Sustainable Construction, Cairo, Egypt.
  • 79. Li Q, Rottmair CA, Singer RF (2010) CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos Sci Technol 70: 2242–2247.    
  • 80. Mansoor M, Shahid M (2016) Carbon nanotube-reinforced aluminum composite produced by induction melting. J Appl Res Technol 14: 215–224.    
  • 81. Yang J (2005) Carbon nanotubes as reinforcements and interface modifiers in metal matrix composites [PhD's thesis]. Federal Institute of Technology, Switzerland.
  • 82. Pala H, Sharma V, Kumar R, et al. (2012) Facile synthesis and electrical conductivity of carbon nanotube reinforced nanosilver composite. Z Naturforsch A 67a: 679–684.
  • 83. Hippmann S, Li Q, Addinal R, et al. (2013) Carbon nanotubes-reinforced copper matrix composites produced by melt stirring. Proc IMechE Part N: J Nanoeng Nanosys 227: 63–66.
  • 84. Stein J, Lenczowski B, Fréty N, et al. (2001) High-performance metal matrix composites reinforced by carbon nanotubes. Proceedings of the 18th International Conference on Composites Materials, Jeju Island, Korea.
  • 85. Gupta ML, Sydlik SA, Schnorr JM, et al. (2013) The effect of mixing methods on the dispersion of carbon nanotubes during the solvent-free processing of multiwalled carbon nanotube/epoxy composites. J Polym Sci Pol Phys 51: 410–420.    
  • 86. Barrau S, Demont P, Perez E, et al. (2003) Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites. Macromolecules 36: 9678–9680.
  • 87. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43: 1378–1385.    
  • 88. Shi DL, Feng XQ, Huang YY, et al. (2004) The Effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J Eng Mater Technol 126: 250–257.    
  • 89. Alian AR, El-Borgi S, Meguid SA (2016) Multiscale modeling of the effect of waviness and agglomeration of CNTs on the elastic properties of nanocomposites. Comput Mater Sci 117: 195–204.    
  • 90. Rafiee R, Firouzbakht V (2014) Predicting Young's modulus of aggregated carbon nanotube reinforced polymer. Mech Adv Compos Struct 1: 9–16.
  • 91. Shokrieh MM, Rafiee R (2010) Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites. Compos Struct 92: 2415–2420.    
  • 92. Shokrieh MM, Rafiee R (2012) Development of a full range multi-scale model to obtain elastic properties of CNT/polymer composites. Iran Polym J 21: 397–402.    
  • 93. Peng R, Zhou H, Wang H, et al. (2012) Modeling of nano-reinforced polymer composites: microstructure effect on Young's modulus. Comput Mater Sci 60: 19–31.    
  • 94. Ma PC, Mo SY, Tang BZ, et al. (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48: 1824–1834.    
  • 95. Javadinejad M, Mashayekhi M, Karevan M, et al. (2018) Using the equivalent fiber approach in two-scale modeling of the elastic behavior of carbon nanotube/epoxy nanocomposite. Nanomaterials 8: 696.    
  • 96. Swain SK, Jena I (2010) Polymer/carbon nanotube nanocomposites: a novel material. Asian J Chem 22: 1–15.
  • 97. Nguyen-Tran HD, Hoang VT, Do VT, et al. (2018) Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts. Materials 11: 429.    
  • 98. Villoria RGD, Miravete A (2007) Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater 55: 3025–3031.    
  • 99. Li YL, Shen MY, Su HS, et al. (2012) A Study on mechanical properties of cnt-reinforced carbon/carbon composites. J Nanomater, 262694.
  • 100. Morsi K (2001) Review: reaction synthesis processing of Ni–Al intermetallic materials. Mater Sci Eng 299: 1–15.    
  • 101. Bundy VK (2018) The effect of carbon nanotube (CNT) Length on the microstructure of Ni–CNT powders and their potential for reactive processing [MD's thesis]. San Diego State University, USA.
  • 102. German RM (2005) Powder Metallurgy & Particulate Materials Processing. Princeton: Metal Powder Industries Federation.
  • 103. Casini R, Papari G, Andreone A, et al. (2015) Dispersion of carbon nanotubes in melt compounded polypropylene based composites investigated by THz spectroscopy. Opt Express 23: 18181–18192.    
  • 104. Munir KS, Wen C (2016) Deterioration of the strong sp2 carbon network in carbon nanotubes during the mechanical dispersion processi–a review. Crit Rev Solid State 41: 347–66.    
  • 105. Krause B, Villmow T, Boldt R, et al. (2011) Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites. Compos Sci Technol 71: 1145–1153.    
  • 106. Ahn JH, Shin HS, Kim YJ, et al. (2007) Structural modification of carbon nanotubes by various ball milling. J Alloy Compd 434–435: 428–432.
  • 107. Tarlton T, Sullivan E, Brown J, et al. (2017) The role of agglomeration in the conductivity of carbon nanotube composites near percolation. J Appl Phys 121: 085103.    
  • 108. Tishkova V, Raynal PI, Puech P, et al. (2011) Electrical conductivity and Raman imaging of double wall carbon nanotubes in a polymer matrix. Compos Sci Technol 71: 1326–1330.    
  • 109. Schvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, et al. (2004) Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir 20: 6085–6088.    
  • 110. Alvarez L, Righi A, Rols S, et al. (1999) On the Raman spectrum of nanobundles of single wall carbon nanotubes. Mater Res Soc Symp Pro 593:107–112.    
  • 111. Prashantha k, Soulestin J, Lacrampe MF, et al. (2010) Electrical and dielectric properties of multi-walled carbon nanotube filled polypropylene nanocomposites. Polym Polym Compos 18: 489–494.
  • 112. Kumar P, Srinivas J (2017) Elastic behavior of CNT-reinforced polymer composites with discontinuities in CNT configurations. Mater Sci Eng 178: 012016.
  • 113. Bello D, Wardle BL, Yamamoto N, et al. (2009) Exposures to nanoscale particles and fibers during handling, processing, and machining of nanocomposites and nanoengineered composites reinforced with aligned carbon nanotubes. Proceedings of the 17th International Conference on Composite Materials, Edinburgh, UK.
  • 114. Yip MC, Lin YC, Wu CL (2011) Effect of multi-walled carbon nanotubes addition on mechanical properties of polymer composites laminate. Polym Polym Compos 19: 131–140.
  • 115. Hadavand BS, Javid KM, Gharagozlou M (2013) Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Mater Des 50: 62–67.    
  • 116. Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation. Compos Part A-Appl S 34: 689–694.    
  • 117. Aguilar JO, Bautista-Quijano JR, Avilés F (2010) Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Express Polym Lett 4: 292–299.    
  • 118. Yurdakul H, Seyhan AT, Turan S, et al. (2010) Electric field effects on CNTs/vinyl ester suspensions and the resulting electrical and thermal composite properties. Compos Sci Technol 70: 2102–2110.    
  • 119. Li Q, Xue QZ, Gao XL, et al. (2009) Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. Express Polym Lett 3: 769–777.    
  • 120. Jang SH, Kawashima S, Yin H (2016) Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes. Materials 9: 220.    
  • 121. Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid Stm 8: 31–37.    
  • 122. Pötschke P, Mothes F, Krause B, et al. (2019) Melt-mixed PP/MWCNT composites: influence of CNT incorporation strategy and matrix viscosity on filler dispersion and electrical resistivity. Polymers 11: 189.    
  • 123. Jiang L (2013) Development of an enhanced microstructure-level machining model for carbon nanotube reinforced polymer composites using cohesive zone interface [MD's thesis]. University of Illinois, Champaign.
  • 124. Mahmoodi M (2013) Electrical, thermal, and machining behaviour of injection moulded polymeric CNT nanocomposites [PhD's thesis]. University of Calgary, Alberta.
  • 125. Mahmoodi M, Paz TM, Park SS (2013) Characterization and micro end milling of graphene nano platelet (GNP) and carbon nanotube (CNT) filled nanocomposites, Proceedings of the 8th International Conference on MicroManufacturing, Victoria, Canada.
  • 126. Zygoń P, Gwoździk M, Peszke J, et al. (2015) Comparison of properties of polymer composite materials reinforced with carbon nanotubes. Arch Metall Mater 60: 193–198.    
  • 127. Wang Z (2007) Reinforcing efficiency of carbon nanotubes in poly (vinyl alcohol) composites [PhD's thesis]. University of London, London.
  • 128. Wang T, Song B, Qiao K, et al. (2018) Effect of dimensions and agglomerations of carbon nanotubes on synchronous enhancement of mechanical and damping properties of epoxy nanocomposites. Nanomaterials 8: 996.    
  • 129. Ni W, Wang B, Wang H, et al. (2006) Fabrication and properties of carbon nanotube and poly (vinyl alcohol) composites. J Macromol Sci B 45: 659–664.    
  • 130. Kundalwal SI (2017) Review on micromechanics of nano-and micro-fiber reinforced composites. Polym Composite 39: 4243–4274.
  • 131. Kundalwal SI, Ray MC (2011) Micromechanical analysis of fuzzy fiber reinforced composites. Int J Mech Mater Des 7: 149–166.    
  • 132. Feng XQ, Shi DL, Huang YG, et al. (2007) Micromechanics and multiscale mechanics of carbon nanotubes-reinforced composites, In: Sih GC, Multiscaling in Molecular and Continuum Mechanics: Interaction of Time and Size from Macro to Nano, The Netherlands: Springer Dordrecht, 103–139.
  • 133. Wernik JM, Meguid SA (2014) Multiscale micromechanical modeling of the constitutive response of carbon nanotube-reinforced structural adhesives. Int J Solids Struct 51: 2575–2589.    
  • 134. Tornabene F, Bacciocchi M, Fantuzzi N, Reddy JN, et al. (2017) Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures. Polym Compos 40: E102–E126.
  • 135. Seidel GD, Hammerand DC, Lagoudas DC (2007) Analytic and computational micromechanics of clustering and interphase effects in carbon nanotube composites. Sandia Report, Sandia National Laboratories, USA.


This article has been cited by

  • 1. Bashida V. Basheer, Jinu Jacob George, Suchart Siengchin, Jyotishkumar Parameswaranpillai, Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review, Nano-Structures & Nano-Objects, 2020, 22, 100429, 10.1016/j.nanoso.2020.100429
  • 2. Ahmed Gamal El-Shamy, Polyvinyl alcohol and silver decorated carbon quantum-dots for new nano-composites with application electromagnetic interface (EMI) shielding, Progress in Organic Coatings, 2020, 146, 105747, 10.1016/j.porgcoat.2020.105747
  • 3. Saowapa T. Niyomthai, Prasit Pavasant, Pitt Supaphol, Adsorption study of bovine serum albumin onto multiwalled carbon nanotubes, Materials Today: Proceedings, 2020, 10.1016/j.matpr.2020.05.060
  • 4. Ohood Q Alsmairat, Feilin Gou, Christopher M Dmuchowski, Paul R Chiarot, Cheol Park, Ron N Miles, Changhong Ke, Quantifying the interfacial load transfer in electrospun carbon nanotube polymer nanocomposite microfibers by using in situ Raman micromechanical characterization techniques, Journal of Physics D: Applied Physics, 2020, 53, 36, 365302, 10.1088/1361-6463/ab8fdd
  • 5. M. Alajmi, K.R. Alrashdan, T. Alsaeed, A. Shalwan, Tribological Characteristics of Graphite Epoxy Composites Using Adhesive Wear Experiments, Journal of Materials Research and Technology, 2020, 10.1016/j.jmrt.2020.09.106

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved