Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Optimization of compression moulding parameters of multiwall carbon nanotube/synthetic graphite/epoxy nanocomposites with respect to electrical conductivity

1 Department of Mechanical Engineering, Universitas Bung Hatta, 25143 Padang, West Sumatera-Indonesia
2 Department of Industrial Engineering, Universitas Ekasakti, 25133 Padang, West Sumatera-Indonesia

This study aims to optimize the electrical conductivity of multiwall carbon nanotube (MWCNT)/synthetic graphite (SG)/epoxy nanocomposites through varying the compression moulding parameters. SG and MWCNTs were used as primary and secondary fillers, respectively. The moulding temperature, moulding pressure, and moulding time were the factors controlled in this research, using the orthogonal array (OA)-Taguchi method. Analysis of variance (ANOVA) and signal to noise ratio (SNR) were used to analyse the results. The optimum nanocomposite electrical conductivity obtained was 163 S/cm, exceeding the electrical conductivity required by the Department of Energy of the United States for bipolar plate applications.
  Article Metrics

Keywords compression moulding parameters; electrical conductivity; bipolar plate; Taguchi method

Citation: Hendra Suherman, Irmayani. Optimization of compression moulding parameters of multiwall carbon nanotube/synthetic graphite/epoxy nanocomposites with respect to electrical conductivity. AIMS Materials Science, 2019, 6(4): 621-634. doi: 10.3934/matersci.2019.4.621


  • 1. Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrogen Energ 30: 1297–1302.    
  • 2. Kamarudin SK, Daud WRW, Som AM, et al. (2006) Technical design and economic evaluation of a PEM fuel cell system. J Power Sources 157: 641–649.    
  • 3. Kishi H, Kuwata M, Matsuda S, et al. (2004) Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Compos Sci Technol 64: 2517–2523.    
  • 4. Liao SH, Yen CY, Weng CC, et al. (2008) Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 185: 1225–1232.    
  • 5. Rybak A, Boiteux G, Melis F, et al. (2010) Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Compos Sci Technol 70: 410–416.    
  • 6. Dweiri R, Suherman H, Sulong AB, et al. (2018) Structure-property-processing investigation of electrically conductive polypropylene nanocomposites. Sci Eng Compos Mater 25: 1177–1186.    
  • 7. Dweiri R (2015) The Potential of Using Graphene Nanoplatelets for Electrically Conductive Compression-Molded Plates. Jordan J Mech Ind Eng 9: 1–8.
  • 8. Suherman H, Sulong AB, Zakaria MY, et al. (2018) Electrical conductivity and physical changes of functionalized carbon nanotubes/graphite/staniless steel (SS316L)/polyprophelene composites immersed in an acidic solution. Songklanakarin J Sci Technol 40: 105–112.
  • 9. Suherman H, Duskiardi, Suardi A, et al. (2019) Enhance the electrical conductivity and tensile strength of conductive polymer composites using hybrid conductive filler. Songklanakarin J Sci Technol 41: 174–180.
  • 10. Suherman H, Mahyoedin Y, Septe E, et al. (2019) Properties of graphite/epoxy composites: the in-plane conductivity, tensile strength and Shore hardness. AIMS Mater Sci 6: 165–173.    
  • 11. Lee JH, Jang YK, Hong CE, et al. (2009) Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells. J Power Sources 193: 523–529.    
  • 12. Hu N, Masuda Z, Yamamoto G, et al. (2008) Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposite. Compos Part A-Appl S 39: 893–903.    
  • 13. Suherman H, Sahari J, Sulong AB (2011) Electrical properties of carbon nanotubes-based epoxy nanocomposites for high electrical conductive plate. Adv Mater Res 264–265: 559–564.
  • 14. Suherman H, Sulong AB, Sahari J (2013) Effect of the compression molding parameters on the in-plane and through-plane conductivity of carbon nanotubess/graphite/epoxy nanocomposites as bipolar plate material for a polymer electrolyte membrane fuel cell. Ceram Int 39: 1277–1284.    
  • 15. Yi XS, Wu G, Ma D (1998) Property balancing for polyethylene-based carbon black-filled conductive composites. J Appl Polym Sci 67: 131–138.    
  • 16. Du C, Ming P, Hou M, et al. (2010) Preparation and properties of thin epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells. J Power Sources 195: 794–800.    
  • 17. San FGB, Okur O (2017) The effect of compression molding parameters on the electrical and physical properties of polymer composite bipolar plates. Int J Hydrogen Energ 42: 23054–23069.    
  • 18. Akhtar MN, Sulong AB, Umer A, et al. (2018) Multi-component MWCNT/NG/EP-based bipolar plates with enhanced mechanical and electrical characteristics fabricated by compression moulding. Ceram Int 44: 14457–14464.    
  • 19. Selamat MZ, Sahari J, Muhamad N, et al. (2011) Simultaneous optimization for multiple responses on the compression moulding parameters of composite graphite–polypropylene using Taguchi method. Key Eng Mater 471–472: 361–366.
  • 20. Sulong AB, Park J, Azhari CH, et al. (2011) Process optimization of melt spinning and mechanical strength enhancement of functionalized multi-walled carbon nanotubes reinforcing polyethylene fibers. Compos Part B-Eng 42: 11–17.    
  • 21. Chang CY, Huang R, Lee PC, et al. (2011) Application of a weighted Grey-Taguchi method for optimizing recycled aggregate concrete mixtures. Cement Concrete Comp 33: 1038–1049.    
  • 22. Liu YT, Chang WC, Yamagata YA (2010) A study on optimal compensation cutting for an aspheric surface using the Taguchi method. CIRP J Manuf Sci Tec 3: 40–48.    
  • 23. Lin JL, Wang KS, Yan BH, et al. (2000) Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics. J Mater Process Tech 102: 48–55.    
  • 24. Wang Y, Northwood DO (2008) Optimization of the polypyrrole-coating parameters for proton exchange membrane fuel cell bipolar plates using the Taguchi method. J Power Sources 185: 226–232.    
  • 25. Nalbant M, Gokkaya H, Sur G (2007) Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater Design 28: 1379–1385.    
  • 26. Das NC, Chaki TK, Khastgir D (2002) Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites. Carbon 40: 807–816.    
  • 27. Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement, New York: John Willey & Sons.
  • 28. Roberts MJ, Russo R (1999) A Student's Guide to Analysis of Variance, New York, USA: Routledge.
  • 29. Antunes RA, De Oliveira MCL, Ett G, et al. (2011) Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. J Power Sources 196: 2945–2961.    
  • 30. Boey FYC, Lye SW (1992) Void reduction in autoclave processing of thermoset composites: Part 2: Void reduction in a microwave curing process. Composites 23: 266–270.    
  • 31. Bin Z, Bingchu M, Chunhui S, et al. (2006) Study on the electrical and mechanical properties of polyvinylidene fluroide/titanium silicon carbide composite bipolar plates. J Power Sources 161: 997–1001.    
  • 32. Hui C, Hong-bo L, Li Y, et al. (2010) Study on the preparation and properties of novolac epoxy/graphite composite bipolar plate for PEMFC. Int J Hydrogen Energ 35: 3105–3109.    
  • 33. Zakaria MZ, Suherman H, Sahari J, et al. (2013) Effect of mixing parameters on electrical conductivity of carbon black/graphite/epoxy nanocomposite using Taguchi method. Appl Mech Mater 393: 68–73.    
  • 34. Ma PC, Liu MY, Zhang H, et al. (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Inter 1: 1090–1096.    
  • 35. Dweiri R, Suherman H, Sulong AB, et al. (2018) Structure-property-processing investigation of electrically conductive polypropylene nanocomposites. Sci Eng Compos Mater 25: 1177–1186.    


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved