Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Synthesis of easily sinterable ceramic electrolytes based on Bi-doped 8YSZ for IT-SOFC applications

1 Department of Civil and Mechanical Engineering, University of Cassino and Southern Latio, Via G. Biasio 43, 03043 Cassino (FR) Italy
2 Center of Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology, Hwarangno 14-gil, Seongbuk-gu, Seoul 136-791, South Korea
3 Department of Civil, Chemical and Environmental Engineering, University of Genova, Via Opera Pia 15, 16145, Genova (GE), Italy

Topical Section: Materials for Energy Systems

Ceramic electrolytes formed by Bi (4 mol%)-doped 8YSZ, i.e., Y2O3 (8 mol%)-doped ZrO2, were synthesized by a simple co-precipitation route, using ammonia solution as precipitating agent. The amorphous as-synthesized powders convert into zirconia-based single phase with fluorite structure through a mild calcination step at 500 °C. The calcined powders were sintered at very low temperatures (i.e., 900–1100 °C) achieving in both cases very high values of relative densities (i.e., >95%); the corresponding microstructures were highly homogeneous and characterized by micrometric grains or sub-micrometric grains for sintering at 1100 °C and 900 °C, respectively. Very interesting electrochemical properties were determined by Electrochemical Impedance Spectroscopy (EIS) in the best samples. In particular, their total ionic conductivity, recorded at 650 °C, are 6.06 × 10-2S/cm and 4.44 × 10-2S/cm for Bi (4 mol%)-doped 8YSZ sintered at 1100 °C and 900 °C, respectively. Therefore, Bi was proved to be an excellent sintering aid dopant for YSZ, highly improving its densification at lower temperatures while increasing its total ionic conductivity.
  Article Metrics

Keywords yttria-doped zirconia; bismuth oxide; co-precipitation; ceramic electrolyte; sintering aids; ionic conductivity

Citation: Luca Spiridigliozzi, Grazia Accardo, Emilio Audasso, Barbara Bosio, Sung Pil Yoon, Gianfranco Dell’Agli. Synthesis of easily sinterable ceramic electrolytes based on Bi-doped 8YSZ for IT-SOFC applications. AIMS Materials Science, 2019, 6(4): 610-620. doi: 10.3934/matersci.2019.4.610


  • 1. Panthi D, Tsutsumi A (2014) Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support. Sci Rep 4: 5754.
  • 2. Nagao M, Kobayashi K, Hibino T (2014) Low-temperature sintering of yttria-stabilized zirconia using bismuth-vanadium oxide as a sintering aid at 800 °C. Chem Lett 43: 1887–1889.    
  • 3. Dell'Agli G, Mascolo G (2003) Sinterability of 8Y-ZrO2 powders hydrothermally synthesized at low temperature. Solid State Ionics 160: 363–371.    
  • 4. Barad C, Shekel G, Shandalov M, et al. (2017) Internal nano voids in yttria stabilized zirconia (YSZ) powder. Materials 10: 1440.    
  • 5. Shekel G, Barad C, Hayun H, et al. (2018) Applying the general effective media (GEM) approach for analyzing the thermal conductivity of ZrO2-8YSZ composites. Phys Chem Chem Phys 20: 16666–16672.    
  • 6. Barad C, Shamir D, Cahana M, et al. (2019) Influence of galia (Ga2O3) addition on the phase evolution and grain growth behavior of voided yttria stabilized zirconia (YSZ) powder. J Alloy Compd 783: 286–291.    
  • 7. Joh DW, Park JH, Kim D, et al. (2017) Functionally graded bismuth oxide/zirconia bilayer electrolytes for high performance intermediate-temperature solid oxide fuel cells (IT-SOFCs) ACS Appl Mater Inter 9: 8443–8449.
  • 8. Spiridigliozzi L, Dell'Agli G, Biesuz M, et al. (2016) Effect of the precipitating agent on the synthesis and sintering behavior of 20 mol Sm-doped ceria. Adv Mater Sci Eng 2016: 6096123.
  • 9. Dell'Agli G, Spiridigliozzi L, Pansini M, et al. (2018) Effect of the carbonate environment on morphology and sintering behaviour of variously co-doped (Ca, Sr, Er, Pr) Samarium-doped Ceria in co-precipitation/hydrothermal synthesis. Ceram Int 44: 17935–17944.    
  • 10. Jaiswala N, Tanwar K, Suman R, et al. (2019) A brief review on ceria based solid electrolytes for solid oxide fuel cells. J Alloy Compd 781: 984–1005.    
  • 11. Jolley AG, Jayathilake R, Wachsman ED (2019) Optimizing rhombohedral Bi2O3 conductivity for low temperature SOFC electrolytes. Ionics 2019: 1–6.
  • 12. Flegler AJ, Burye TE, Yang Q, et al. (2014) Cubic yttria stabilized zirconia sintering additive impacts: a comparative study. Ceram Int 40: 16323–16335.    
  • 13. Mahato N, Banerjee A, Gupta A, et al. (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72: 141–337.    
  • 14. Da SFS, De STM (2017) Novel materials for solid oxide fuel cell technologies: a literature review. Int J Hydrogen Energ 42: 26020–26036.    
  • 15. Accardo G, Frattini D, Ham HC, et al. (2018) Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion. Ceram Int 44: 3800–3809.    
  • 16. Liu L, Zhou Z, Tian H, et al. (2016) Effect of bismuth oxide on the microstructure and electrical conductivity of yttria stabilized zirconia. Sensors 16: 369–379.    
  • 17. Dell'Agli G, Mascolo G, Mascolo MC, et al. (2005) Crystallization-stabilization mechanism of yttria-doped zirconia by hydrothermal treatment of mechanical mixtures of zirconia xerogel and crystalline yttria. J Cryst Growth 280: 255–265.    
  • 18. Akhtar K, Haq IU, Hira U (2013) Synthesis and characterization of uniform zirconia particles by homogeneous precipitation method. High Temp Mat Pr 32: 391–395.
  • 19. Accardo G, Dell'Agli G, Frattini D, et al. (2017) Electrical behaviour and microstructural characterization of magnesia co-doped ScSZ nanopowders synthesized by urea co-precipitation. Chem Eng T 57: 1345–1350.
  • 20. Da Silva CA, Ribeiro NFP, Souza MMVM (2009) Effect of the fuel type on the synthesis of yttria stabilized zirconia by combustion method. Ceram Int 35: 3441–3446.    
  • 21. Ghahfarokhi SS, Mamoory RS, Kalashami AG (2018) Inverse precipitation synthesis of ZrO2 nanopowder and in-situ coating on MWCNTs. Ceram Int 44: 13556–13564.    
  • 22. Barad C, Kimmel G, Hayun H, et al. (2018) Influence of galia (Ga2O3) addition on phase transitions and crystal growth of zirconia (ZrO2). J Mater Sci 53: 12741–12749.    
  • 23. Razik NA (1985) Precise lattice constants determination of cubic crystals from x-ray powder diffractometric measurements. Appl Phys A-Mater 37: 187–189.    
  • 24. Dell'Agli G, Mascolo G, Mascolo MC, et al. (2008) Drying effect on thermal behaviour and structural modification of hydrous zirconia gel. J Am Ceram Soc 91: 3375–3379.    
  • 25. Dell'Agli G, Mascolo G, Mascolo MC, et al. (2006) Weakly-agglomerated nanocrystalline (ZrO2)0.9(Yb2O3)0.1 powders hydrothermally synthesized at low temperature. Solid State Sci 8: 1046–1050.
  • 26. Kim DJ (1989) Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions. J Am Ceram Soc 72: 1415–1421.    
  • 27. Andini S, Montagnaro F, Santoro L, et al. (2018) Mechanochemical processing of blast furnace slag for its reuse as adsorbent. Chem Eng T 32: 22 99–2304.
  • 28. Frattini D, Accardo G, Moreno A, et al. (2017) A novel nickel-aluminum alloy with titanium for improved anode performance and properties in molten carbonate fuel cells. J Power Sources 352: 90–98.    
  • 29. Spiridigliozzi L, Dell'Agli G, Marocco A, et al. (2018) Engineered co-precipitation chemistry with ammonium carbonate for scalable synthesis and sintering of improved Sm0.2Ce0.8>O1.90 and Gd0.16Pr0.04Ce0.8O1.90 electrolytes for IT-SOFCs. J Ind Eng Chem 59: 17–27.


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved