Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Characterization of microstructural and optical CoFe2O4/SiO2 ferrite nanocomposite for photodegradation of methylene blue

1 Department of Physics Education, Faculty of Teaching and Education, Universitas Samudra, Kota Langsa, 24416, Indonesia
2 Department of Mechanical Engineering, Faculty of Engineering, Universitas Samudra, Kota Langsa, 24416, Indonesia
3 Department of Chemistry, Faculty of Engineering, Universitas Samudra, Kota Langsa, 24416, Indonesia
4 Department of Physics, Faculty of Engineering, Universitas Samudra, Kota Langsa, 24416, Indonesia

In this research, the CoFe2O4 and CoFe2O4/SiO2 nanocomposites have been synthesized using the co-precipitation method, and the microstructural properties of the samples were characterized using X-ray diffraction methods (XRD). The photodegradation activity of methylene blue for both nanocomposites were also investigated. The XRD pattern of CoFe2O4/SiO2 nanocomposites revealed that the sample was polycrystalline and had a spinel crystal structure with group space of Fd3m. The size of crystallite nanoparticle is 29.4 ± 0.2 nm for CoFe2O4/SiO2 and 26.8 ± 0.2 nm for CoFe2O4. The CoFe2O4/SiO2 nanocomposites have smaller optical band gap compared to bare CoFe2O4 due to smaller surface defect and larger particles size. The CoFe2O4/SiO2 nanocomposites showed a more energetic photodegradation activity of methylene blue than CoFe2O4. The encapsulation of the SiO2 matrix on the surface CoFe2O4 nanoparticles enhances the photodegradation activity. Based on the result, nanocomposites CoFe2O4/SiO2 and CoFe2O4 are prospective as nano-photocatalyst and nano-adsorbent for organic pollutants.
  Article Metrics

Keywords characterization; dye; microstructural; optical; photocatalyst

Citation: Muhammad Yakob, Hamdani Umar, Puji Wahyuningsih, Rachmad Almi Putra. Characterization of microstructural and optical CoFe2O4/SiO2 ferrite nanocomposite for photodegradation of methylene blue. AIMS Materials Science, 2019, 6(1): 45-51. doi: 10.3934/matersci.2019.1.45


  • 1. Dippong T, Levei EA, Diamandescu L, et al. (2015) Structural and magnetic properties of CoxFe3−xO4 versus Co/Fe molar ratio. J Magn Magn Mater 394: 111–116.    
  • 2. Dippong T, Levei EA, Cadar O, et al. (2017) Size and shape-controlled synthesis and characterization of CoFe2O4 nanoparticles embedded in a PVA-SiO2 hybrid matrix. J Anal Appl Pyrol 128: 121–130.    
  • 3. Dippong T, Levei EA, Tanaselia C, et al. (2016) Magnetic properties evolution of the CoxFe3−xO4/SiO2 system due to advanced thermal treatment at 700 ℃ and 1000 ℃. J Magn Magn Mater 410: 47–54.    
  • 4. Dippong T, Cadar O, Levei EA, et al. (2017) Structure and magnetic properties of CoFe2O4/SiO2 nanocomposites obtained by sol-gel and post annealing pathways. Ceram Int 43: 2113–2122.    
  • 5. Ahmed AI, Siddig MA, Mirghni AA, et al. (2015) Structural and optical properties of Mg1−xZnxFe2O4 nano-ferrites synthesized using co-precipitation method. Adv Nanoparticles 4: 45–52.    
  • 6. Indrayana IPT, Julian T, Suharyadi E (2018) UV light-driven photodegradation of methylene blue by using Mn0.5Zn0.5Fe2O4/SiO2 nanocomposites. J Phys Conf Ser 1011: 012062.
  • 7. Dippong T, Levei EA, Cadar O, et al. (2017) Sol-gel synthesis of CoFe2O4:SiO2 nanocomposites-insights into the thermal decomposition process of precursors. J Anal Appl Pyrol 125: 169–177.    
  • 8. Suwanchawalit C, Somjit V (2015) A facile hydrothermal synthesis of magnetic CoFe2O4 nanoparticles and photocatalytic performance. Dig J Nanomater Bios 10: 705–713.
  • 9. Köferstein R, Walther T, Hesse D, et al. (2013) Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel process and corresponding ceramics. J Mater Sci 48: 6509–6518.    
  • 10. Cataldo F (1998) Thermal depolymerization and pyrolysis of cis-1,4-polyisoprene: preparation of liquid polyisoprene and terpene resin. J Anal Appl Pyrol 44: 121–130.    
  • 11. Gowreesan S, Kumar AR (2017) Effects of Mg2+ ion substitution on the structural and electric studies of spinel structure of Co1−xMgxFe2O4. J Mater Sci-Mater El 28: 4553–4564.    
  • 12. Erdem D, Bingham NS, Heiligtag FJ, et al. (2016) CoFe2O4 and CoFe2O4-SiO2 nanoparticle thin films with perpendicular magnetic anisotropy for magnetic and magneto-optical applications. Adv Funct Mater 26: 1954–1963.    
  • 13. Balakrishnan P, Veluchamy P (2015) Synthesis and characterization of CoFe2O4 magnetic nanoparticles using sol-gel method. Int J ChemTech Res 8: 271–276.


This article has been cited by

  • 1. Ageng Trisna Surya Pradana Putra, An improved method for high photocatalytic performance of ZnAl2O4 spinel derived from layered double hydroxide precursor, SN Applied Sciences, 2020, 2, 5, 10.1007/s42452-020-2682-7

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved