Review

Potential biodegradable matrices and fiber treatment for green composites: A review

  • Received: 10 December 2018 Accepted: 17 January 2019 Published: 01 March 2019
  • In recent years, the development and use of composite materials are gaining importance in the field of aerospace, automobile, marine and other industrial applications because of their potential properties such as higher specific strength and better corrosion and fatigue properties than most metals. The ever-increasing temperatures on earth surface and the use of non-biodegradable materials for industrial applications lead to increase in global warming which forced the researchers to work on green composites that suite the properties and reliability of the metals, alloys, composites. The increase in use of polymers which are not biodegradable increases air and water pollution. Development of green composites helps to maintain ecological balance. The review of this article focuses on discussing the green matrix material and modifications needed for fibers to improve the properties of green composites.

    Citation: Kanishka Jha, Ravinder Kataria, Jagesvar Verma, Swastik Pradhan. Potential biodegradable matrices and fiber treatment for green composites: A review[J]. AIMS Materials Science, 2019, 6(1): 119-138. doi: 10.3934/matersci.2019.1.119

    Related Papers:

  • In recent years, the development and use of composite materials are gaining importance in the field of aerospace, automobile, marine and other industrial applications because of their potential properties such as higher specific strength and better corrosion and fatigue properties than most metals. The ever-increasing temperatures on earth surface and the use of non-biodegradable materials for industrial applications lead to increase in global warming which forced the researchers to work on green composites that suite the properties and reliability of the metals, alloys, composites. The increase in use of polymers which are not biodegradable increases air and water pollution. Development of green composites helps to maintain ecological balance. The review of this article focuses on discussing the green matrix material and modifications needed for fibers to improve the properties of green composites.


    加载中


    [1] Bogoeva-Gaceva G, Dimeski D, Srebrenkoska V (2013) Biocomposites based on poly(lactic acid) and kenaf fibers: Effect of micro-fibrillated cellulose. Maced J Chem Chem En 32: 331–335.
    [2] Dundar T, Ayrilmis N, Büyüksari U (2010) Utilization of waste pine cone in manufacture of wood/plastic composite. Second International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy.
    [3] Kabir MM, Wang H, Aravinthan T, et al. (2011) Effects of natural fibre surface on composite properties: A review. Proceedings of the 1st international postgraduate conference on engineering, designing and developing the built environment for sustainable wellbeing (eddBE2011), Queensland University of Technology, 94–99.
    [4] Mittal G, Dhand V, Rhee KY, et al. (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21: 11–25. doi: 10.1016/j.jiec.2014.03.022
    [5] Reddy MM, Vivekanandhan S, Misra M, et al. (2013) Biobased plastics and bionanocomposites: Current status and future opportunities. Prog Polym Sci 38: 1653–1689. doi: 10.1016/j.progpolymsci.2013.05.006
    [6] Rahman A, Ali I, Al Zahrani SM, et al. (2011) A review of the applications of nanocarbon polymer composites. Nano 6: 185–203. doi: 10.1142/S179329201100255X
    [7] Ogunsona EO, Misra M, Mohanty AK (2017) Impact of interfacial adhesion on the microstructure and property variations of biocarbons reinforced nylon 6 biocomposites. Compos Part A-Appl S 98: 32–44. doi: 10.1016/j.compositesa.2017.03.011
    [8] Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24: 221–274. doi: 10.1016/S0079-6700(98)00018-5
    [9] Cyras VP, Iannace S, Kenny JM, et al. (2001) Relationship between processing and properties of biodegradable composites based on PCL/starch matrix and sisal fibers. Polym Composite 22: 104–110.
    [10] Chiellini E, Cinelli P, Chiellini F, et al. (2004) Environmentally degradable bio-based polymeric blends and composites. Macromol Biosci 4: 218–231. doi: 10.1002/mabi.200300126
    [11] Lee SG, Choi SS, Park WH, et al. (2003) Characterization of surface modified flax fibers and their biocomposites with PHB. Macromolecular symposia, Weinheim: WILEY-VCH Verlag, 197: 89–100.
    [12] Barari B, Omrani E, Moghadam AD, et al. (2016) Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: an attempt to fabricate and scale the 'Green' composite. Carbohyd Polym 147: 282–293. doi: 10.1016/j.carbpol.2016.03.097
    [13] Omrani E, Menezes PL, Rohatgi PK (2016) State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. JESTECH 19: 717–736.
    [14] Varma IK, Krishnan SRA, Krishnamoorthy S (1989) Composites of glass/modified jute fabric and unsaturated polyester resin. Composites 20: 383–388. doi: 10.1016/0010-4361(89)90664-2
    [15] Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, et al. (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos Part B-Eng 30: 309–320. doi: 10.1016/S1359-8368(98)00054-7
    [16] Mohanty AK, Misra MA, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: An overview. Macromol Mater Eng 276: 1–24.
    [17] Wallenberger FT, Weston N (2003) Natural fibers, plastics and composites, Springer Science & Business Media.
    [18] Cicala G, Cristaldi G, Recca G, et al. (2010) Composites based on natural fibre fabrics. In: Woven fabric engineering, InTech.
    [19] Abdelmouleh M, Boufi S, Belgacem MN, et al. (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67: 1627–1639. doi: 10.1016/j.compscitech.2006.07.003
    [20] Joseph PV (2001) Studies on short sisal fibre reinforced isotactic polypropylene composites.
    [21] Taj S, Munawar MA, Khan S (2007) Natural fiber-reinforced polymer composites. Proc Pakistan Acad Sci 44: 129–144.
    [22] Sutton A, Black D, Walker P (2011) Natural Fiber Insulation: An Introduction to Low Impact Building Material, IHS BRE Press.
    [23] Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67: 1674–1683. doi: 10.1016/j.compscitech.2006.06.019
    [24] Razak NIA, Ibrahim NA, Zainuddin N, et al. (2014) The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites. Molecules 19: 2957–2968. doi: 10.3390/molecules19032957
    [25] Misra S, Misra M, Tripathy SS, et al. (2002) The influence of chemical surface modification on the performance of sisal-polyester biocomposites. Polym Composite 23: 164–170. doi: 10.1002/pc.10422
    [26] Krishnaiah P, Ratnam CT, Manickam S (2017) Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments. Ultrason Sonochem 34: 729–742. doi: 10.1016/j.ultsonch.2016.07.008
    [27] Asim M, Jawaid M, Abdan K, et al. (2016) Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J Bionic Eng 13: 426–435. doi: 10.1016/S1672-6529(16)60315-3
    [28] Mathew L, Joseph KU, Rani J (2004) Isora fibres and their composites with natural rubber. Prog Rubber Plast Re 20: 337.
    [29] Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interface 8: 313–343. doi: 10.1163/156855401753255422
    [30] Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions, Walter de Gruyter.
    [31] Behera AK, Avancha S, Basak RK, et al. (2012) Fabrication and characterizations of biodegradable jute reinforced soy based green composites. Carbohyd Polym 88: 329–335. doi: 10.1016/j.carbpol.2011.12.023
    [32] Aziz SH, Ansell MP (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1-polyester resin matrix. Compos Sci Technol 64: 1219–1230. doi: 10.1016/j.compscitech.2003.10.001
    [33] Xie Y, Hill CA, Xiao Z, et al. (2010) Silane coupling agents used for natural fiber/polymer composites: A review. Compos Part A-Appl S 41: 806–819. doi: 10.1016/j.compositesa.2010.03.005
    [34] Devi LU, Bhagawan SS, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci 64: 1739–1748. doi: 10.1002/(SICI)1097-4628(19970531)64:9<1739::AID-APP10>3.0.CO;2-T
    [35] George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41: 1471–1485. doi: 10.1002/pen.10846
    [36] Wang B, Panigrahi S, Tabil L, et al. (2007) Pre-treatment of flax fibers for use in rotationally molded biocomposites. J Reinf Plast Comp 26: 447–463. doi: 10.1177/0731684406072526
    [37] Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, et al. (1999) Chemical modification of henequen fibers with an organosilane coupling agent. Compos Part B-Eng 30: 321–331. doi: 10.1016/S1359-8368(98)00055-9
    [38] Rong MZ, Zhang MQ, Liu Y, et al. (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61: 1437–1447. doi: 10.1016/S0266-3538(01)00046-X
    [39] Tserki V, Zafeiropoulos NE, Simon F, et al. (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A-Appl S 36: 1110–1118.
    [40] Hill CA, Khalil HA, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crop Prod 8: 53–63. doi: 10.1016/S0926-6690(97)10012-7
    [41] Bledzki AK, Mamun AA, Lucka-Gabor M, et al. (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2: 413–422. doi: 10.3144/expresspolymlett.2008.50
    [42] Paul S, Nanda P, Gupta R (2003) PhCOCl-Py/basic alumina as a versatile reagent for benzoylation in solvent-free conditions. Molecules 8: 374–380. doi: 10.3390/80400374
    [43] Nair KM, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61: 2519–2529. doi: 10.1016/S0266-3538(01)00170-1
    [44] Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15: 25–33.
    [45] Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fiber reinforced polyethylene composites. Polymer 37: 5139–5149. doi: 10.1016/0032-3861(96)00144-9
    [46] Rao CHC, Madhusudan S, Raghavendra G, et al. (2012) Investigation in to wear behavior of coir fiber reinforced epoxy composites with the Taguchi method. Int J Eng Res Appl 2: 2248–9622.
    [47] Paul A, Joseph K, Thomas S (1997) Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Technol 57: 67–79. doi: 10.1016/S0266-3538(96)00109-1
    [48] Khan MA, Hassan MM, Drzal LT (2005) Effect of 2-hydroxyethyl methacrylate (HEMA) on the mechanical and thermal properties of jute-polycarbonate composite. Compos Part A-Appl S 36: 71–81. doi: 10.1016/S1359-835X(04)00178-2
    [49] Aji IS, Sapuan SM, Zainudin ES, et al. (2009) Kenaf fibres as reinforcement for polymeric composites: a review. Int J Mech Mater Eng 4: 239–248.
    [50] Wang B, Panigrahi S, Tabil L, et al. (2007) Pre-treatment of flax fibers for use in rotationally molded biocomposites. J Reinf Plast Comp 26: 447–463. doi: 10.1177/0731684406072526
    [51] Rivera-Armenta JL, Flores-Hernández CG, Del Angel-Aldana RZ, et al. (2012) Evaluation of graft copolymerization of acrylic monomers onto natural polymers by means infrared spectroscopy, In: Infrared Spectroscopy-Materials Science, Engineering and Technology, InTech.
    [52] Singha AS, Rana AK (2012) A comparative study on functionalization of cellulosic biofiber by graft copolymerization of acrylic acid in air and under microwave radiation. BioResources 7: 2019–2037.
    [53] Wang B, Panigrahi S, Crerar W, et al. (2003) Application of pre-treated flax fibers in composites. CSAE/SCGR Paper No. 03-367.
    [54] George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41: 1471–1485. doi: 10.1002/pen.10846
    [55] Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review. Polym Eng Sci 49: 1253–1272. doi: 10.1002/pen.21328
    [56] Wallenberger FT, Weston N (2004) Natural fibers plastics and composites, Springer Science & Business Media.
    [57] Rahman MM, Mallik AK, Khan MA (2007) Influences of various surface pre-treatments on the mechanical and degradable properties of photo grafted oil palm fibres. J Appl Polym Sci 105: 3077–3086. doi: 10.1002/app.26481
    [58] Paul SA, Joseph K, Mathew GG, et al. (2010) Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber. Compos Part A-Appl S 41: 1380–1387. doi: 10.1016/j.compositesa.2010.04.015
    [59] Kiattipanich N, Kreua-Ongarjnukool N, Pongpayoon T, et al. (2007) Properties of polypropylene composites reinforced with stearic acid treated sugarcane fiber. J Polym Eng 27: 411–428.
    [60] Kalaprasad G, Francis B, Thomas S, et al. (2004) Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polym Int 53: 1624–1638. doi: 10.1002/pi.1453
    [61] Torres FG, Cubillas ML (2005) Study of the interfacial properties of natural fibre reinforced polyethylene. Polym Test 24: 694–698. doi: 10.1016/j.polymertesting.2005.05.004
    [62] Pickering KL, Li Y, Farrell RL, et al. (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mater Bio 1: 109–117.
    [63] Jafari MA, Nikkhah A, Sadeghi AA, et al. (2007) The effect of Pleurotus spp. fungi on chemical composition and in vitro digestibility of rice straw. Pak J Biol Sci 10: 2460–2464.
    [64] Kolybaba M, Tabil LG, Panigrahi S, et al. (2006) Biodegradable polymers: past, present, and future. ASABE/CSBE North Central Intersectional Meeting, American Society of Agricultural and Biological Engineers.
    [65] Mohanty AK, Misra MA, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: An overview. Macromol Mater Eng 276: 1–24.
    [66] Riedel U, Nickel J (1999) Natural fibre-reinforced biopolymers as construction materials-new discoveries. Die Angewandte Makromolekulare Chemie 272: 34–40. doi: 10.1002/(SICI)1522-9505(19991201)272:1<34::AID-APMC34>3.0.CO;2-H
    [67] Mohanty AK, Wibowo A, Misra M, et al. (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos Part A-Appl S 35: 363–370.
    [68] Ghanbarzadeh B, Almasi H (2013) Biodegradable Polymer, In: Chamy R, Rosenkranz F, Biodegradation-Life of Science, InTech.
    [69] Albertsson AC, Karlsson S (1995) Degradable polymers for the future. Acta Polym 46: 114-123. doi: 10.1002/actp.1995.010460203
    [70] Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23: 1273–1335. doi: 10.1016/S0079-6700(97)00039-7
    [71] Liu D, Tian H, Zhang L, et al. (2008) Structure and properties of blend films prepared from castor oil-based polyurethane/soy protein derivative. Ind Eng Chem Res 47: 9330–9336. doi: 10.1021/ie8009632
    [72] Kumar R, Liu D, Zhang L (2008) Advances in proteinous biomaterials. J Biobased Mater Bio 2: 1–24.
    [73] Cao X, Chen Y, Chang PR, et al. (2008) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109: 3804–3810. doi: 10.1002/app.28418
    [74] Vazquez A, Dominguez VA, Kenny JM (1999) Bagasse fiber-polypropylene based composites. J Thermoplast Compos 12: 477–497. doi: 10.1177/089270579901200604
    [75] Chen X, Guo Q, Mi Y (1998) Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties. J Appl Polym Sci 69: 1891–1899. doi: 10.1002/(SICI)1097-4628(19980906)69:10<1891::AID-APP1>3.0.CO;2-9
    [76] Thakore IM, Desai S, Sarawade BD, et al. (2001) Studies on biodegradability, morphology and thermo-mechanical properties of LDPE/modified starch blends. Eur Polym J 37: 151–160. doi: 10.1016/S0014-3057(00)00086-0
    [77] Zhang JF, Sun X (2004) Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J Appl Polym Sci 94: 1697–1704. doi: 10.1002/app.21078
    [78] Wattanakornsiri A, Pachana K, Kaewpirom S, et al. (2011) Green composites of thermoplastic corn starch and recycled paper cellulose fibers. Songklanakarin J Sci Technol 33: 461–467.
    [79] Avérous L (2008) Polylactic acid: synthesis, properties and applications, In: Belgacem MN, Gandini A, Monomers, polymers and composites from renewable resources, Elsevier Ltd., 433–450.
    [80] Auras R, Harte B, Selke S (2005) Polylactides. A new era of biodegradable polymers for packaging application. In Ann Tech Conf–ANTEC Conf Proc, 8: 320–324.
    [81] Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63: 1317–1324. doi: 10.1016/S0266-3538(03)00103-9
    [82] Fuqua MA, Huo S, Ulven CA (2012) Natural fiber reinforced composites. Polym Rev 52: 259–320. doi: 10.1080/15583724.2012.705409
    [83] Simoes CL, Viana JC, Cunha AM (2009) Mechanical properties of poly(ɛ-caprolactone) and poly(lactic acid) blends. J Appl Polym Sci 112: 345–352. doi: 10.1002/app.29425
    [84] Jain S, Reddy MM, Mohanty AK, et al. (2010) A new biodegradable flexible composite sheet from poly(lactic acid)/poly(ɛ-caprolactone) blends and Micro-Talc. Macromol Mater Eng 295: 750–762. doi: 10.1002/mame.201000063
    [85] Tuil R, Fowler P, Lawther M, et al. (2000) Properties of biobased packaging materials. In: Production of Biobased Packaging Materials for the Food Industry, Center for Skov, Landskab og Planlægning/Københavns Universitet.
    [86] Lehermeir HJ, Dorgan JR, Way JD (2001) Gas permeation properties of poly(lactic acid). J Membrane Sci 190: 243–251. doi: 10.1016/S0376-7388(01)00446-X
    [87] Rasal RM, Hirt DE (2009) Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization. J Biomed Mater Res A 88: 1079–1086.
    [88] Hiljanen-Vainio M, Varpomaa P, Seppälä J, et al. (1996) Modification of poly(L-lactides) by blending: mechanical and hydrolytic behavior. Macromol Chem Phys 197: 1503–1523. doi: 10.1002/macp.1996.021970427
    [89] Sinclair RG (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci A 33: 585–597. doi: 10.1080/10601329608010880
    [90] Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42: 6209–6219. doi: 10.1016/S0032-3861(01)00086-6
    [91] Ljungberg N, Wesslen B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci 86: 1227–1234. doi: 10.1002/app.11077
    [92] Pongtanayut K, Thongpin C, Santawitee O (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34: 888–897.
    [93] Senawi R, Alauddin SM, Saleh RM, et al. (2013) Polylactic acid/empty fruit bunch fiber biocomposite: Influence of alkaline and silane treatment on the mechanical properties. Int J Biosci Biochem Bioin 3: 59.
    [94] Huda MS, Drzal LT, Misra M, et al. (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physico-mechanical and morphological properties. J Appl Polym Sci 102: 4856–4869. doi: 10.1002/app.24829
    [95] Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63: 1317–1324. doi: 10.1016/S0266-3538(03)00103-9
    [96] Tang G, Zhang R, Wang X, et al. (2013) Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite. J Macromol Sci A 50: 255–269. doi: 10.1080/10601325.2013.742835
    [97] Huang SJ, Edelman PG (1995) An overview of biodegradable polymers and biodegradation of polymers, In: Scott G, Gilead D, Degradable Polymers, Dordrecht: Springer.
    [98] Wu CS (2003) Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polym Degrad Stabil 80: 127–134. doi: 10.1016/S0141-3910(02)00393-2
    [99] Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32: 762–798. doi: 10.1016/j.progpolymsci.2007.05.017
    [100] Honma T, Zhao L, Asakawa N, et al. (2006) Poly(ɛ-caprolactone)/chitin and poly(ɛ-caprolactone)/chitosan blend films with compositional gradients: fabrication and their biodegradability. Macromol Biosci 6: 241–249. doi: 10.1002/mabi.200500216
    [101] Wu CS (2005) A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer 46: 147–155. doi: 10.1016/j.polymer.2004.11.013
    [102] Wu KJ, Wu CS, Chang JS (2007) Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. PG01. Process Biochem 42: 669–675. doi: 10.1016/j.procbio.2006.12.009
    [103] Jha K, Chamoli S, Tyagi YK, et al. (2018) Characterization of biodegradable composites and application of preference selection index for deciding optimum phase combination. Mater Today Proc 5: 3353–3360.
    [104] Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128: 219–228. doi: 10.1111/j.1574-6968.1995.tb07528.x
    [105] Reis KC, Pereira J, Smith AC, et al. (2008) Characterization of polyhydroxybutyrate-hydroxyvalerate (PHB-HV)/maize starch blend films. J Food Eng 89: 361–369. doi: 10.1016/j.jfoodeng.2008.04.022
    [106] Barham PJ, Organ SJ (1994) Mechanical properties of polyhydroxybutyrate-hydroxybutyrate-hydroxyvalerate copolymer blends. J Mater Sci 29: 1676–1679. doi: 10.1007/BF00368945
    [107] Mohammadi M, Ghaffari-Moghaddam M (2014) Recovery and Extraction of Polyhydroxyalkanoates (PHAs), In: Polyhydroxyalkanoate (PHA) based Blends, Composites and Nanocomposites, 30: 47.
    [108] Macedo JS, Costa MF, Tavares MIB, et al. (2010) Preparation and characterization of composites based on polyhydroxybutyrate and waste powder from coconut fibers processing. Polym Eng Sci 50: 1466–1475. doi: 10.1002/pen.21669
    [109] Fragassa C, de Camargo FV, Pavlovic A, et al. (2018) Experimental evaluation of static and dynamic properties of low styrene emission vinylester laminates reinforced by natural fibres. Polym Test 69: 437–449. doi: 10.1016/j.polymertesting.2018.05.050
    [110] Fragassa C, Pavlovic A, Živković I (2018) The accelerated aging effect of salt water on lignocellulosic fibre reinforced composites. Tribol Ind 40: 1–9. doi: 10.24874/ti.2018.40.01.01
    [111] Fragassa C, Pavlovic A, Santulli C (2018) Mechanical and impact characterisation of flax and basalt fibre vinylester composites and their hybrids. Compos Part B-Eng 137: 247–259.
    [112] Mundera F (2003) Advanced Technology for Processing of NFP for Industrial Applications. 7th International Conference on Wood Plastic Composites, Madison, WI, May 19–20.
    [113] Shakoor A, Muhammad R, Thomas NL, et al. (2013) Mechanical and thermal characterisation of poly(l-lactide) composites reinforced with hemp fibers. J Phys Conf Ser 451: 012010. doi: 10.1088/1742-6596/451/1/012010
    [114] Dey K, Ganguly S, Khan RA, et al. (2013) Surface treatment of areca-nut fiber using silane and gamma irradiation: fabrication of polycaprolactone based composite. J Compos Biodegrad Polym 1: 1–7. doi: 10.12974/2311-8717.2013.01.01.1
    [115] Khandanlou R, Ahmad MB, Shameli K, et al. (2014) Mechanical and thermal stability properties of modified rice straw fiber blend with polycaprolactone composite. J Nanomater 2014: 93.
    [116] Sandeep Laxmeshwar S, Viveka S, Madhu Kumar DJ, et al. (2012) Preparation and properties of composite films from modified cellulose fiber-reinforced with PLA. Pharma Chemica 4: 159–168.
    [117] Wu CS (2010) Preparation and characterizations of polycaprolactone/green coconut fiber composites. J Appl Polym Sci 115: 948–956. doi: 10.1002/app.30955
    [118] Phua YJ, Chow WS, Mohd Ishak ZA (2013) Mechanical properties and structure development in poly(butylene succinate)/organo-montmorillonite nanocomposites under uniaxial cold rolling. Express Polym Lett 5: 93–103.
    [119] Barkoula NM, Garkhail SK, Peijs T (2010) Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate. Ind Crop Prod 31: 34–42. doi: 10.1016/j.indcrop.2009.08.005
    [120] Jha K, Tyagi YK, Yadav AS (2018) Mechanical and thermal behaviour of biodegradable composites based on polycaprolactone with pine cone particle. Sādhanā 43: 135.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6499) PDF downloads(1502) Cited by(25)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog