Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Atomic and nuclear surface analysis methods for dental materials: A review

1 Horia Hulubei National Institute for Physics and Nuclear Engineering, 407 Atomistilor, P.O. BoxMG-6, 077125 Bucharest-Magurele, Romania
2 Helident Dental Surgery Ltd., Bucharest, Romania
3 Department of Endodontics, Faculty of Dentistry, Carol Davila Medical University, Bucharest, Romania
4 Department of Dental Esthetics, Faculty of Dentistry, Carol Davila Medical University, Bucharest, Romania

Topical Section: Biomedical materials

The development of dental biomaterials is now on the rise, with new materials created at a high rate and in large variety. Yet, considerable effort is needed to improve their physical–chemical characteristics as well as their biotolerance, biocompatibility and osseointegration, and to extend their longevity. Foremost, the new dental biomaterials are confronted with surface phenomena occuring at their interface with the oral tissues and environment, which produce degradation by corrosion, dissolution and wear. To control them, nondestructive instrumental methods for the investigation of surface chemistry and physics are needed. A comprehensive insight requires also the mapping of elemental, chemical and structural information. Appropriate methods can be among other electron probe microanalysis, laser Raman spectromicroscopy, confocal fluorescence and atomic force microscopy. However, atomic and nuclear surface analysis methods qualify chiefly. They reach unsurpassed sensitivity in elemental analysis and are unique by depth profiling capabilities of layers 1 nm–100 µm thick and by surface mapping. Some techniques can provide also chemical and electronic information. Here we treat the most widely used ion beam analysis (IBA) and X-ray spectrometry (XRS) methods and some related techniques; all make use of incident and emergent beams of radiation and particles to analyze the specimen. Basic principles, practical aspects and applications in dental biomaterials’ research are reviewed comparatively for each technique, with its highlights and limitations. Noteworthy, new microprobe low energy heavy ions accelerators and electron synchrotrons are now commissioned; thus proton and X-ray microbeams are available for surface mapping at micrometer resolution. The reviewed applications cover ceramics, calcium phosphates, glasses, polymers, adhesives, composites, glass ionomers, endodontic materials, silver amalgam, alloys, titanium implants and their coatings, and oral tissues contamination with released elements (sometimes cytotoxic). The present survey is expected to be a representative sampling of a mature topic, typified by the sustainably high dynamics of publications.
  Figure/Table
  Supplementary
  Article Metrics

Keywords IBA; XRS; electron spectroscopy; surface analysis; accelerators; synchrotrons; microbeam; mapping; depth profile; dental biomaterials

Citation: Eugen A. Preoteasa, Elena S. Preoteasa, Ioana Suciu, Ruxandra N. Bartok. Atomic and nuclear surface analysis methods for dental materials: A review. AIMS Materials Science, 2018, 5(4): 781-844. doi: 10.3934/matersci.2018.4.781

References

  • 1. Craig RG (1997) Restorative Dental Materials, St Louis, MO: Mosby-Year Book Inc.
  • 2. Mount J, Hume WR (1998) Preservation and Restoration of Tooth Structure, London: Mosby International Ltd.
  • 3. Bayne SC (2005) Dental biomaterials: Where are we and where are we going? J Dent Educ 69: 571–585.
  • 4. O'Brien WJ (2002) Dental materials and their selection, Hanover Park, IL: Quintessence Publ. Co.
  • 5. Schiffner U (1999) Inhibition of enamel and root dentin demineralization by Ariston pHc: An artificial mouth study. Am J Dent 12: S10–S12.
  • 6. Uo M, Wada T, Sugiyama T (2015) Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens. Jpn Dent Sci Rev 51: 2–9.    
  • 7. Sugiyama T, Uo M, Wada T, et al. (2015) Detection of trace metallic elements in oral lichenoid contact lesions using SR-XRF, PIXE, and XAFS. Sci Rep 5: 10672.    
  • 8. Ektessabi AM, Otsuka T, Tsuboi Y, et al. (1994) Application of micro beam PIXE to detection of titanium ion release from dental and orthopaedic implants. Int J PIXE 4: 81–91.    
  • 9. Szaloki I, Osan J, Van Grieken RE (2006) X-ray spectrometry. Anal Chem 78: 4069–4096.    
  • 10. Van Grieken RE, Markowicz AA (2002) Handbook of X-Ray Spectrometry, 2Eds., New York: Marcel Dekker Inc.
  • 11. Beckhoff B, Kanngießer B, Langhoff N, et al. (2006) Handbook of Practical X-Ray Fluorescence Analysis, Springer-Verlag Berlin Heidelberg.
  • 12. Valkovic V, Moschini G (1993) The use of synchrotron radiation for trace element analysis of biomedical samples. Riv Nuovo Cim 16: 1–55.
  • 13. IAEA (2000) Instrumentation for PIXE and RBS; IAEA-TECDOC-1190. Vienna: International Atomic Energy Agency.
  • 14. Johansson SAE, Campbell JL, Malmqvist KG (1995) Particle-Induced X-Ray Emission Spectrometry (PIXE), John Wiley & Sons.
  • 15. Smit Z (2006) Interaction of particles with matter, School on Ion Beam Analysis and Accelerator Applications. Trieste, Italy: Abdus Salam International Center for Theoretical Physics (ICTP). Available from: http://indico.ictp.it/event/a05196/session/3/contribution/1/material/0/0.pdf.
  • 16. Verma HR (2007) Atomic and Nuclear Analytical Methods. XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques, Springer-Verlag Berlin Heidelberg.
  • 17. Gurbich A, Bogdanovic-Radovic I, Chiari M, et al. (2008) Status of the problem of nuclear cross section data for IBA. Nucl Instrum Meth B 266: 1198–1202.    
  • 18. Demortier G (2003) Non-destructive depth profiling of solid samples by atomic and nuclear interactions induced by charged particles. J Electron Spectrosc 129: 243–271.    
  • 19. Meyer O, Käppeler F, Linker G (1975) Ion Beam Surface Layer Analysis, New York, London: Plenum Press.
  • 20. Tesmer JR, Nastasi M (1995) Handbook of Modern Ion Beam Materials Analysis, Pittsburg: Materials Research Society.
  • 21. Thellier M, Ripoll C, Quintana C, et al. (1993) Physical methods to locate metal atoms in biological systems. Method Enzymol 227: 535–586.    
  • 22. Bubert H, Jenett H (2002) Surface and Thin Film Analysis: A compendium of Principles, Instrumentation, and Applications, Weinheim, Germany: Wiley-VCH.
  • 23. Benninghoven A (1984) A comparison of spectroscopical techniques in surface analysis. TrAC-Trend Anal Chem 3: 112–115.
  • 24. Vickerman JC, Brown A, Reed NM (1989) Secondary Ion Mass Spectrometry: Principles and Applications, Oxford: Clarendon Press.
  • 25. Wilson RG, Stevie FA, Magee CW (1989) Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, New York: John Wiley & Sons.
  • 26. Windawi H, Ho F (1982) Applied Electron Spectroscopy for Chemical Analysis, New York: John Wiley & Sons.
  • 27. Grant JT, Briggs D (2003) Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Chichester, UK: IM Publications.
  • 28. Koningsberger DC, Prins R (1988) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, New York: John Wiley & Sons.
  • 29. Stern EA, Heald SM(1983) Principles and Applications of EXAFS, In: Koch EE, Handbook of Synchrotron Radiation, Amsterdam, Oxford, New york: North-Holland, 995–1014.
  • 30. Stöhr J (2013) NEXAFS Spectroscopy, Springer-Verlag Berlin Heidelberg.
  • 31. Segebade C, Starovoitova VN, Borgwardt T, et al. (2017) Principles, methodologies, and applications of photon activation analysis: A review. J Radioanal Nucl Ch 2017: 1–17.
  • 32. Siegel RW (1980) Positron annihilation spectroscopy. Annu Rev Mater Sci 10: 393–425.    
  • 33. Alfassi Z (2001) Non-Destructive Elemental Analysis, Oxford, London: Blackwell Science.
  • 34. Gardella JA (1984) Multitechnique spectroscopic analysis of polymer surfaces. TrAC-Trend Anal Chem 3: 129–133.    
  • 35. Ikeda S (1984) Electron spectroscopy for surface analysis. TrAC-Trend Anal Chem 3: 115–120.    
  • 36. Malmqvist KG (1995) Biological and medical applications, In: Johansson SAE, Campbell JL, Malmqvist KG, Particle-Induced X-Ray Emission Spectrometry (PIXE), John Wiley & Sons, 167–236.
  • 37. Moretto P (1996) Nuclear microprobe: A microanalytical technique in biology. Cell Mol Biol (Noisy-le-grand) 42: 1–16.
  • 38. Petibois C, Cestelli GM (2008) Bioimaging of cells and tissues using accelerator-based sources. Anal Bioanal Chem 391: 1599–1608.    
  • 39. Preoteasa EA, Preoteasa ES, Suciu I (2012) Atomic and Nuclear Surface Analysis Methods: A Novel Perspective for the Characterization of Dental Composites, New York: Nova Science Publishers, Inc.
  • 40. Jones FH (2001) Teeth and bones: Applications of surface science to dental materials and related biomaterials. Surf Sci Rep 42: 75–205.    
  • 41. Johansson SAE, Campbell JL (1995) Comparison with other methods, In: Johansson SAE, Campbell JL, Malmqvist KG, Particle-Induced X-Ray Emission Spectrometry (PIXE), John Wiley & Sons, 419–432.
  • 42. West NG (1984) X-ray fluorescence spectrometry applied to the analysis of environmental samples. TrAC-Trend Anal Chem 3: 199–204.    
  • 43. Jenkins R (1976) An Introduction to X-ray Fluorescence Spectrometry, Wiley-VCH Verlag GmbH & Co.
  • 44. Bertin EP (1978) Principles and Practice of X-ray Spectrochemical Analysis, New York, London: Plenum Press.
  • 45. Murr LE (1982) Electron and Ion Microscopy and Microanalysis: Principles and Applications, New York: Marcel Dekker, Inc.
  • 46. Baranowska I, Barchański L, Bąk M, et al. (2004) X-ray fluorescence spectrometry in multielemental analysis of hair and teeth. Pol J Environ Stud 13: 639–646.
  • 47. Bloch P, Shapiro IM, Soule L, et al. (1998) Assessment of lead exposure of children from K-XRF measurements of shed teeth. Appl Radiat Isotopes 49: 703–705.    
  • 48. Bush MA, Miller RG, Prutsman-Pfeiffer J, et al. (2007) Identification through X-ray fluorescence analysis of dental restorative resin materials: A comprehensive study of noncremated, cremated, and processed-cremated individuals. J Forensic Sci 52: 157–165.    
  • 49. Bush MA, Miller RG, Norrlander AL, et al. (2008) Analytical survey of restorative resins by SEM⁄EDS and XRF: Databases for forensic. J Forensic Sci 53: 1–7.
  • 50. Preoteasa EA, Ciortea C, Constantinescu B, et al. (2002) Analysis of composites for restorative dentistry by PIXE, XRF and ERDA. Nucl Instrum Meth B 189: 426–430.    
  • 51. Stankiewicz W, Bolibrzuch B, Marczak M (1998) Gold and gold alloy reference materials for XRF analysis. Gold Bull 31: 119–125.    
  • 52. Uo M, Watari F (2004) Rapid analysis of metallic dental restorations using X-ray scanning analytical microscopy. Dent Mater 20: 611–615.    
  • 53. Uo M, Asakura K, Yokoyama A, et al. (2007) X-ray absorption fine structure (XAFS) analysis of titanium-implanted soft tissue. Dent Mater J 26: 268–273.    
  • 54. Obeidat SM, Al-Momani I, Haddad A, et al. (2011) Combination of ICP-OES, XRF and XRD techniques for analysis of several dental ceramics and their identification using chemometrics. J Spectrosc 26: 141–149.    
  • 55. Rauf N, Tahir D, Arbiansyah M (2016) Structural analysis of bioceramic materials for denture application. AIP Conf Proc 1719: 030030.    
  • 56. Nakamura K (2015) Mechanical and microstructural properties of monolithic zirconia [Thesis]. University of Gothenburg.
  • 57. Perdigão J, Pinto AM, Monteiro RCC, et al. (2012) Degradation of dental ZrO2-based materials after hydrothermal fatigue. Part I: XRD, XRF, and FESEM analyses. Dent Mater J 31: 256–265.
  • 58. Cianconi L, Palopoli P, Campanella V, et al. (2016) Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation. Eur J Paediatr Dent 17: 281–285.
  • 59. Gandolfi MG, Sauro S, Mannocci F, et al. (2007) New tetrasilicate cements as retrograde filling material: An in vitro study on fluid penetration. J Endodont 33: 742–745.    
  • 60. Rodríguez RAC, Hernandez PG, Garcia GM, et al. (2015) Physicochemical analysis of MTA Angelus® and Biodentine® conducted with X ray difraction, dispersive energy spectrometry, X ray fluorescence, scanning electron microscope and infra red spectroscopy. Rev Odont Mex 19: 174–180.
  • 61. Elzubair A, Elias CN, Suarez JCM, et al. (2006) The physical characterization of a thermoplastic polymer for endodontic obturation. J Dent 34: 784–789.    
  • 62. Kawai J (2008) High-sensitivity small-size X-ray fluorescence spectrometers. Horiba Technical Reports, Guest forum, English edit, 12: 52–57.
  • 63. Budhdachat K, Klinhom S, Siengdee P (2016) Elemental analysis of bone, teeth, horn and antler in different animal species using non-invasive handheld X-ray fluorescence. PLoS One 11: e0155458.    
  • 64. Trombka JI, Schweitzer J, Selavka C, et al. (2002) Crime scene investigations using portable, non-destructive space exploration technology. Forensic Sci Int 52: 1–9.
  • 65. Shetty SS (2015) Advanced technologies an aid in forensic odontology: An update. Int J Adv Res 3: 1615–1620.
  • 66. Bowers M (2010) Forensic Dental Evidence: An Investigator's Handbook, Amsterdam: Elsevier.
  • 67. Christensen AM, Smith MA, Thomas RM (2012) Validation of X-ray fluorescence spectrometry for determining osseous or dental origin of unknown material. J Forensic Sci 57: 47–51.    
  • 68. Zimmerman HA (2010) Preliminary validation of handheld x-ray fluorescence (HHXRF) spectrometry: Distinguishing osseous and dental tissue from non-bone material of similar chemical composition [Thesis]. Florida Gulf Coast University.
  • 69. Sanchez HJ, Perez CA, Grenon M (2000) SRXRF analysis with spatial resolution of dental calculus. Nucl Instrum Meth B 170: 211–218.    
  • 70. Gomez S, Rizzo R, Pozzi-Mucelli M (1999) Zinc mapping in bone tissues by histochemistry and synchrotron radiation-induced X-ray emission: Correlation with the distribution of alkaline phosphatase. Bone 25: 33–38.    
  • 71. Ektessabi AI (2007) Applications of Synchrotron Radiation: Micro Beams in Cell Micro Biology and Medicine, Springer-Verlag Berlin Heidelberg.
  • 72. Kalra S (2013) The distribution and pro-inflammatory impact of titanium debris accumulation in the peri-implant environment [Thesis]. University of Birmingham.
  • 73. Ektessabi AM, Rokkum M, Johansson C, et al. (1998) Application of synchrotron radiation in investigation of metal-ion release from a hip replacement prosthesis. J Synchrotron Radiat 5: 1136–1138.    
  • 74. Vis RD (1988) Biomedical applications of proton induced X-ray emission. Scanning Microsc 2: 977–984.
  • 75. Gomez-Morilla I, Simon A, Simon R, et al. (2006) An evaluation of the accuracy and precision of X-Ray microanalysis techniques using BCR-126A glass reference material. Nucl Instrum Meth B 249: 897–902.    
  • 76. Mair LH (1995) Stain and subsurface degradation of dental composites as a function of structure and permeability: A clinical and laboratory study. Adv Dent Res 9: 457–461.    
  • 77. Preoteasa EA, Georgescu R, Ciortea C, et al. (2004) Standardless PIXE analysis of thick biomineral structures. Anal Bioanal Chem 379: 825–841.
  • 78. Wätjen U, Maier-Komor P, Pengo R, et al. (1995) Intercalibration standards for accelerator based analytical techniques. Nucl Instrum Meth B 99: 376–379.    
  • 79. Ambrose TM, Al-Lozi M, Scott MG (2000) Bone lead concentrations assessed by in vivo X-ray fluorescence. Clin Chem 46: 1171–1178.
  • 80. Suciu I, Preoteasa EA, Gurban D, et al. (2006) Potential of PIXE for the elemental analysis of calcium hydroxide used in dentistry. Rom Rep Phys 58: 569–582.
  • 81. Borges AH, Guedes OA, Dorilêo MCGO, et al. (2014) Analysis of chemical elements and heavy metals in MTA Fillapex and AH Plus. Oral Health Dent Manag (OHDM) 13: 1007–1012.
  • 82. Oliveira MG, Xavier CB, Demarco FF, et al. (2007) Comparative chemical study of MTA and Portland cements. Braz Dent J 18: 3–7.    
  • 83. Dammaschke T, Gerth HU, Züchner H, et al. (2005) Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 21: 731–738.    
  • 84. Song JS, Mante FK, Romanow WJ, et al. (2006) Chemical analysis of powder and set forms of Portland cement, gray ProRoot MTA, white ProRoot MTA, and gray MTA-Angelus. Oral Surg Oral Med O 102: 809–815.    
  • 85. Belío-Reyes IA, Bucio L, Cruz-Chavez E (2009) Phase composition of ProRoot mineral trioxide aggregate by X-ray powder diffraction. J Endodont 35: 875–878.    
  • 86. Grech L, Mallia B, Camilleri J (2013) Characterization of set intermediate restorative material, Biodentine, Bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Int Endod J 46: 632–641.    
  • 87. Gandolfi MG, Siboni F, Primus CM, et al. (2014) Ion release, porosity, solubility, and bioactivity of MTA Plus tricalcium silicate. J Endodont 40: 1–6.
  • 88. Han L, Okiji T (2011) Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J 44: 1081–1087.    
  • 89. Kum KY, Kim EC, Yoo YJ, et al. (2013) Trace metal contents of three tricalcium silicate materials: MTA Angelus, Micro Mega MTA and Bioaggregate. Int Endod J 39: 497–500.    
  • 90. Kinebuchi M, Matsuura A, Kiyono T, et al. (2016) Diagnostic copper imaging of Menkes disease by synchrotron radiation-generated X-ray fluorescence analysis. Sci Rep 6: 33247.    
  • 91. Dobrowolski Z, Drewniak T, Kwiatek W, et al. (2002) Trace elements distribution in renal cell carcinoma depending on stage of disease. Eur Urol 42: 475–480.    
  • 92. Reddy SB, Charles MJ, Raju GJN, et al. (2003) Trace elemental analysis of carcinoma kidney and stomach by PIXE method. Nucl Instrum Meth B 207: 345–355.    
  • 93. Denker A, Bohne W, Rauschenberg J, et al. (2005) Materials analysis using fast ions. CAS-CERN Accelerator School and KVI: Specialised CAS Course on Small Accelerators. Zeegse, The Netherlands, 417–432. Available from:https://cas.web.cern.ch/.../files/lectures/zeegse-2005/denker.pdf.
  • 94. Forslind B (1999) Biomedical applications of particle probes and X-ray analysis. Nucl Instrum Meth B 150: 150–157.    
  • 95. Garten RPH (1984) PIXE: Possibilities in elemental micro- and trace-analysis. TrAC-Trend Anal Chem 3: 152–157.    
  • 96. Gilfrich JV (1978) Microanalysis and trace analysis, In: Herglotz H, Birks LS, X-Ray Spectrometry. Practical Spectroscopy Series 2, New York: Marcel Dekker, Inc., 393–411.
  • 97. Jaklevic JM, Goulding FS (1978) Energy dispersion. In: Herglotz H, Birks LS, X-Ray Spectrometry. Practical Spectroscopy Series 2. New York: Marcel Dekker, Inc., 17–57.
  • 98. Govil IM (2001) Proton induced X-ray emission-a tool for non-destructive trace element analysis. Curr Sci 80: 1542–1549.
  • 99. IAEA (2003) Intercomparison of PIXE spectrometry software packages. IAEA-TECDOC-1342. Vienna: International Atomic Energy Agency.
  • 100. Johansson SAE, Johannson TB (1976) Analytical application of particle induced X-ray emission. Nucl Instrum Method 137: 473–516.    
  • 101. Lindh U, Tveit AB (1980) Proton microprobe determination of fluorine depth distributions and surface multielement characterization in dental enamel. J Radioanal Nucl Ch 59: 167–191.    
  • 102. Watt F, Grime GW (1995) The high-energy ion microprobe, In: Johansson SAE, Campbell JL, Malmqvist KG, Particle-Induced X-Ray Emission Spectrometry (PIXE), John Wiley & Sons, 101–166.
  • 103. Legge GJF (1987) The limits of spatial resolution in PIXE. Nucl Instrum Meth B 22: 115–120.    
  • 104. Lill JO, Harju L, Saarela KE, et al. (1999) Increased sensitivity in thick target particle induced X-ray emission analyses using dry ashing for preconcentration. Anal Chim Acta 378: 273–278.    
  • 105. Campbell JL (1995) Instrumentation, fundamentals, and quantification, In: Johansson SAE, Campbell JL, Malmqvist KG, Particle-Induced X-Ray Emission Spectrometry (PIXE), John Wiley & Sons, 19–100.
  • 106. Demortier G, Nammour S (2008) In vivo PIXE-PIGE study of enhanced retention of fluorine in tooth enamel after laser irradiation. Nucl Instrum Meth B 266: 2408–2411.    
  • 107. Grambole D, Neelmeijer C, Noll K, et al. (2000) 19F(p, p'γ)19F and 18O(p, γ)19F gamma-ray interferences studied on liquids. Nucl Instrum Meth B 161: 269–274.
  • 108. Wätjen U, Prins H, Van Bijlen R, et al. (1990) A new PIXE chamber for highly reproducible and automatized operation. Nucl Instrum Meth B 49: 78–84.    
  • 109. Maxwell JA, Teesdale WJ, Campbell JL (1995) The Guelph PIXE software package II. Nucl Instrum Meth B 95: 407–421    
  • 110. Ahlberg M, Akselsson R (1976) Proton-induced X-ray emission in the trace analysis of human tooth enamel and dentine. Int J Appl Radiat Isotopes 27: 279–290.    
  • 111. Ziegler JF (1995) SRIM-the stopping and range of ions in matter-particle interactions with matter. Available from: http://www.srim.org/.
  • 112. Bailey MJ, Coe S, Grant DM, et al. (2009) Accurate determination of the Ca/P ratio in rough hydroxyapatite samples by SEM-EDS, PIXE and RBS-a comparative study. X-Ray Spectrom 38: 343–347.    
  • 113. Sjöland KA, Munnik F, Wätjen U (2000) Thick-target correction in PIXE for randomly inhomogeneous samples. Nucl Instrum Meth B : 264–268.
  • 114. Smit Z (1987) Surface roughness correction in thick target PIXE analysis. Nucl Instrum Meth B 28: 567–570.    
  • 115. Wätjen U, Bax H, Rähen J (1996) On the complementary use of ion beam techniques in the near surface analysis of implanted alloys. Nucl Instrum Meth B 118: 676–680.    
  • 116. Cohen DD, Clayton E (1987) A database for thick target PIXE. Nucl Instrum Meth B 22: 59–63.    
  • 117. Verón MG, Pérez PD, Suárez SG, et al. (2017) Study of the effect of common infusions on glass ionomers using the PIXE and RBS techniques. Nucl Instrum Meth B 412: 93–101.    
  • 118. Vecchi R, Valli G, Chiari M, et al. (2004) An investigation on metal-free restorations by means of PIXE analysis. 10th International Conference on Particle-induced X-ray Emission and its Analytical Applications PIXE 2004, Portoroz, Slovenia.
  • 119. Yamamoto H, Nomachi M, Yasuda K, et al. (2003) Fluorine mapping of teeth treated with fluorine-releasing compound using PIGE. Nucl Instrum Meth B 210: 388–394.    
  • 120. Yamamoto H, Nomachi M, Yasuda K, et al. (2007) Fluorine uptake into the human tooth from a thin layer of F-releasing material. Nucl Instrum Meth B 260: 194–200.    
  • 121. Komatsu H, Yamamoto H, Matsuda Y, et al. (2011) Fluorine analysis of human enamel around fluoride-containing materials under different pH-cycling by μ-PIGE/PIXE system. Nucl Instrum Meth B 269: 2274–2277.    
  • 122. Funato Y, Matsuda Y, Okuyama K, et al. (2015) A new technique for analyzing trace element uptake by human enamel. Dent Mater J 34: 240–245.    
  • 123. Yagi K, Yamamoto H, Uemura R, et al. (2017) Use of PIXE/PIGE for sequential Ca and F measurements in root carious model. Sci Rep 7: 13450.    
  • 124. Preoteasa EA, Georgescu R, Ciortea C, et al. (2004) Multivariate statistics and mean atomic number classification of dental composites as analyzed by PIXE. 10th International Conference on Particle induced X-ray Emission and its Analytical Applications PIXE 2004, Portoroz, Slovenia.
  • 125. Preoteasa EA, Preoteasa ES, Ciortea C, et al. (2009) PIXE and PIGE assessment of in vivo elemental and physical changes of a composite from a dental filling. X-Ray Spectrom 38: 548–556.    
  • 126. Preoteasa EA, Preoteasa ES, Harangus L, et al. (2010) Proton µ-PIXE mapping, AFM imaging and size statistics of mineral granules in a dental composite. X-Ray Spectrom 39: 208–215.    
  • 127. Preoteasa EA, Preoteasa ES, Kuczumow A, et al. (2008) Broad beam- and micro-PIXE analysis of normal and in vitro demineralized dental enamel. X-ray Spectrom 37: 517–535.    
  • 128. Wätjen U, Cavé H (1996) Reference materials in the context of calibration and quality control of PIXE analysis: The case of aerosol analysis. Nucl Instrum Meth B 109–110: 395–401.
  • 129. Gomez S, Garcia A, Landete-Castillejos T, et al. (2016) Potential of the Bucharest 3 MV TandetronTM for IBA studies of deer antler mineralization. Nucl Instrum Meth B 371: 413–418.    
  • 130. Gomez S, Preoteasa EA, Harangus L, et al. (2006) Micro-PIXE and histochemical studies of Zn and Ca distribution in normal bone. Nucl Instrum Meth B 249: 673–676.    
  • 131. Fischer BE, Voss KO, Du G (2009) Targeted irradiation of biological cells using an ion microprobe-why a small beam spot is not sufficient for success. Nucl Instrum Meth B 267: 2122–2124.    
  • 132. Niinomi M, Narushima T, Nakai M (2015) Advances in Metallic Biomaterials: Tissues, Materials and Biological Reactions, Springer-Verlag Berlin Heidelberg.
  • 133. Johansson E, Lindh U (1987) Mercury in blood cells-altered elemental profiles: Toxic events in human exposure. Biol Trace Elem Res 12: 309–321.    
  • 134. Eggleston DW (1984) Effect of dental amalgam and nickel alloys on T-Iymphocytes: Preliminary report. J Prosthet Dent 51: 617–622.    
  • 135. Lindh U, Hudecek R, Danersund A, et al. (2002) Removal of dental amalgam and other metal alloys supported by antioxidant therapy alleviates symptoms and improves quality of life in patients with amalgam-associated ill health. Neuroendocrinol Lett 23: 459–482.
  • 136. Carvalho ML, Pinheiro T, Barreiros MA, et al. (1998) Amalgam components drift in teeth-toxicity risks: A preliminary approach. Nucl Instrum Meth B 136: 913–918.
  • 137. Meesat R, Sudprasert W, Guibert E, et al. (2017) Micro-PIXE study of metal loss from dental amalgam. Nucl Instrum Meth B 404: 106–109.    
  • 138. Tadic T, Jaksic M, Babic-Zivko J, et al. (1990) Diffusion of metals from crown into teeth. Nucl Instrum Meth B 49: 211–215.    
  • 139. Brunell G, Lindh U (1982) Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique. Nucl Instrum Meth B 197: 209–212.    
  • 140. Simonoff M, Berdeu B, Llabador Y, et al. (1988) Micro-analysis of the composition of dental implants before and after implantation, In: Hildebrand HF, Champy M, Biocompatibility of Co-Cr-Ni Alloys, NATO ASI Series (Series A: Life Sciences), Boston, MA: Springer.
  • 141. Ektessabi A, Shikine S, Kitamura N, et al. (2001) Distribution and chemical states of iron and chromium released from orthopedic implants into human tissues. X-Ray Spectrom 30: 44–48.    
  • 142. Passi P, Zadro A, Galassini S, et al. (2002) PIXE micro-beam mapping of metals in human peri-implant tissues. J Mater Sci-Mater M 13: 1083–1089.    
  • 143. Ektessabi AM, Shikine S, Hamdi M, et al. (2000) Friction wear and dissolution of orthopedic implant systems. Int J PIXE 10: 37–45.    
  • 144. Ektessabi AM, Mouhyi J, Louvette P, et al. (1997) Investigation of corrosion and ion release from titanium dental implant. Int J PIXE 7: 179–199.    
  • 145. Sugiyama Y, Ishibashi S, Sekiyama S, et al. (1999) Analysis of elements in the soft tissue covering titanium plates and screws for internal bone fixation by the PIXE method. Int J PIXE 9: 305–313.    
  • 146. Kumar S, Narayanan TS (2008) Corrosion behaviour of Ti-15Mo alloy for dental implant applications. J Dent 36: 500–507.    
  • 147. Rautray TR, Das S, Rautray AC (2010) In situ analysis of human teeth by external PIXE. Nucl Instrum Meth B 268: 2371–2374.    
  • 148. Tsuboi Y, Ektessabi AM, Sennerby L, et al. (1996) In vivo measurement of titanium release by PIXE. Nucl Instrum Meth B 109–110: 345–349.
  • 149. Ektessabi AM, Kimura H (1995) Characterization of the surface of bio-ceramic thin films. Thin Solid Films 270: 335–340.    
  • 150. Ektessabi AM, Hamdi M (2002) Characterization of calcium phosphate bioceramic films using ion beam analysis techniques. Surf Coat Tech 153: 10–15.    
  • 151. Pan J, Thierry D, Leygraf C (1996) Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta 41: 1143–1153.    
  • 152. Scougall-Vilchis RJ, Hotta Y, Hotta M, et al. (2009) Examination of composite resins with electron microscopy, microhardness tester and energy dispersive X-ray microanalyzer. Dent Mater J 28: 102–112.    
  • 153. Asaka Y, Miyazaki M, Aboshi H, et al. (2004) EDX fluorescence analysis and SEM observations of resin composites. J Oral Sci 46: 143–148.    
  • 154. Gerth HUV, Dammaschke T, Züchner H, et al. (2006) Chemical analysis and bonding reaction of RelyX Unicem and Bifix composites-a comparative study. Dent Mater 22: 934–941.    
  • 155. Oprea C, Szalanski PJ, Gustova MV, et al. (2013) Trace element distribution in human teeth by X-ray fluorescence spectrometry and multivariate statistical analysis. Rom Rep Phys 65: 452–459.
  • 156. Ledesma AF, Santana FHB, Galindo LB, et al. (2016) Elemental chemical composition and phase analysis by means of PIXE, DSC, TGA, and DRX of MTA Angelus and white Potland cement. Rev Odont Mex 20: 182–186.
  • 157. Fano L, Fano V, Ma W, et al. (2004) Hydrolytic degradation and cracks in resin-modified glass-ionomer cements. J Biomed Mater Res B 69: 87–93.
  • 158. Pineda-Vargas CA, Eisa ME, Chikte UME, et al. (2004) High resolution nuclear microprobe elemental mapping of teeth enamel-dentine interface exposed to acidic conditions. Radiat Phys Chem 71: 937–942.    
  • 159. Pineda-Vargas CA, Naidoo S, Eisa MEM (2007) Nuclear microanalysis of tooth enamel from a community in the Western Cape, South Africa. Nucl Instrum Meth B 260: 190–193.    
  • 160. Zhou M, Drummond J, Hanley L (2005) Barium and strontium leaching from aged glass particle/resin matrix dental composites. Dent Mater 21: 145–155.    
  • 161. Ranne T (2008) Thermoplastic bioactive composite, with special reference to dissolution behavior and tissue response [Thesis]. University of Turku.
  • 162. Van Meerbeek B, Dhem A, Goret-Niccaise M, et al. (1993) Comparative SEM and TEM examination of the ultrastructure of the resin-dentin interdiffusion zone. J Dent Res 72: 495–501.    
  • 163. Van Meerbeek B, Mohrbacher H, Celis JP, et al. (1993) Chemical characterization of the resin-dentib interface by micro-Raman spectroscopy. J Dent Res 72: 1423–1428.    
  • 164. Demortier G (1992) Twenty years of analysis of light elements at the LARN. Nucl Instrum Meth B 66: 51–64.    
  • 165. Dimitriou P, Becker HW, Bogdanović-Radović I, et al. (2016) Development of a reference database for particle-induced gamma-ray emission spectroscopy. Nucl Instrum Meth B 371: 33–36.    
  • 166. Mayer M (2003) Nuclear reaction analysis (NRA). Lecture at the Workshop on Nuclear Data for Science and Technology: Materials Analysis, Trieste, LNS0822004.
  • 167. Chaudhri MA (1995) Nuclear analytical methods in calcified tissue research. Nutrition 11: 538–541.
  • 168. Kapczinski MP, Gil C, Kinast EJ, et al. (2003) Surface modification of titanium by plasma nitriding. Mater Res 6: 265–271.    
  • 169. Kapczinski MP, Kinast EJ, dos Santos CA (2003) Near-surface composition and tribological behaviour of plasma nitrided titanium. J Phys D Appl Phys 36: 1858–1863.    
  • 170. Aires MDM, Treter J, Filho AN, et al. (2016) Minimizing Pseudomonas aeruginosa adhesion to titanium surfaces by a plasma nitriding process. AIMS Biophys 4: 19–32.    
  • 171. Moro R (1986) Research on trace elements in biomedicine carried out in Italy using nuclear accelerators, In: Onori S, Tabet E, Physics in Environment and Biomedical Research, World Scientific Publishing Co, 99–108.
  • 172. Torrisi L (1986) Fluorine concentrations in teeth studied by 19F(p, αo)16O nuclear reaction, In: Onori S, Tabet E, Physics in Environment and Biomedical Research, World Scientific Publ Co, 137–141.
  • 173. Coote GE, Cutress TW, Suckling GW (1997) Uptake of fluoride into developing sheep teeth, following the 1995 volcanic eruption of Mt Ruapehu, New Zealand. Nucl Instrum Meth B 130: 571–575.    
  • 174. Rizzutto MA, Tabacniks MH, Added N, et al. (2002) External PIGE-PIXE measurements at the Sao Paulo 8UD tandem accelerator. Nucl Instrum Meth B 190: 186–189.    
  • 175. Baijot-Stroobants J, Vreven J (1980) In-vivo uptake of topically applied fluoride by human dental enamel. Arch Oral Biol 25: 617–621.    
  • 176. Baijot-Stroobants J, Vreven J (1979) Determination by charged particle activation of fluoride uptake in human dental enamel. Caries Res 13: 211–217.    
  • 177. Fano V, Shatel M, Tanzi ML (2007) Release phenomena and toxicity in polymer-based dental restorative materials. ABM 78: 190–197.
  • 178. Sakai T, Oikawa M, Sato T (2005) External scanning proton microprobe-a new method for in-air elemental analysis. J Nucl Radiochem Sci 6: 69–71.    
  • 179. Yamamoto H, Iwami Y, Yagi K, et al. (2014) Evaluation of caries progression in dentin treated by fluoride-containing materials using PIGE/PIXE system. 14th International Conference on Nuclear Microprobe Technology and Applications ICNMTA, Debrecen, Hungary.
  • 180. Okuyama K, Komatsu H, Yamamoto H, et al. (2011) Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis. Nucl Instrum Meth B 269: 2269–2273.    
  • 181. Sommer F, Engelmann C (1987) Possibilities for using the nuclear microprobe to determine carbon, nitrogen and other elements in teeth. Nucl Instrum Meth B 22: 128–132.    
  • 182. Mihailescu IN, Preoteasa EA, Preoteasa ES (2016) Periodic surface structures induced on dental enamel by CO2 laser 10.6 µm radiation: A novel effect with potential applications in dentistry, In: Reimer A, Horizons in World Physics, New York: Nova Science Publishers, Inc., 113–153.
  • 183. Svalbe ID, Chaudhri MA, Traxel K, et al. (1984) Surface profiling of trace elements across pre-carious lesion in teeth. Nucl Instrum Meth B 3: 651–653.    
  • 184. Svalbe ID, Chaudhri MA, Traxel K, et al. (1984) Microprobe profiling of fluorine and other trace elements to large depths in teeth. Nucl Instrum Meth B 3: 648–650.    
  • 185. Callen BW, Sodhi RNS, Griffiths K (1995) Examination of clinical surface preparations on titanium and Ti6Al4V by X-ray photoelectron spectroscopy and nuclear reaction analysis. Prog Surf Sci 50: 269–279.    
  • 186. Ferdjani S, David D, Beranger G (1993) Anodic oxidation of titanium in phosphoric acid baths: Phosphorus incorporation into the oxide. J Alloy Compd 200: 191–194.    
  • 187. Eke C, Er K, Segebade C, et al. (2017) Study of filling material of dental composites: An analytical approach using radioactivation. Radiochim Acta 106: 69–77.
  • 188. Leung TC, Simpson PJ, Atkinson A, et al. (1995) Measurement of oxide thickness using a variable-energy positron beam. Appl Surf Sci 85: 292–294.    
  • 189. Mohsen M, Gomaa E, Mazaid NA, et al. (2017) Synthesis and characterization of organic montmorillonite-polyvinylalcohol-co-polyacrylic nanocomposite hydrogel for heavy metal uptake. AIMS Mater Sci 4: 1122–1139.    
  • 190. Czanderna AW (1975) Methods of Surface Analysis, Amsterdam: Elsevier.
  • 191. Bethge K, Kraft G, Kreisler P, et al. (2013) Medical applications of nuclear physics, Springer-Verlag Berlin Heidelberg.
  • 192. Corn RM (2018) Modern Atomic Spectrometries: XRF, PIXE and RBS. Available from: https://www.chem.uci.edu/~unicorn/249/Handouts/XRF.pdf.
  • 193. Bernsmann F (2007) ToF-SIMS investigations on dental implant materials and adsorbed protein films [Thesis]. Univ. Kaiserslautern.
  • 194. Boudreault G (2002) Accurate ion beam analysis [Thesis]. Univ. Surrey.
  • 195. Frank MJ (2013) Bioactive coating for titanium based bone anchored implants [Thesis]. Univ. Oslo.
  • 196. Min-Qin R (2007) Nuclear microscopy: Development and applications in atherosclerosis, parkinson's disease and materials physics [Thesis]. Univ. Jyväskylä.
  • 197. Peeper K, Moser M, Reichart P, et al. (2012) Non-Rutherford backscattering microscopy using 25 MeV protons. Nucl Instrum Meth B 273: 254–257.    
  • 198. Petrascu M, Berceanu I, Brancus I, et al. (1984) A method for analysis and profiling of boron, carbon and oxygen impurities in semiconductor wafers by recoil atoms in heavy ion beams. Nucl Instrum Meth B 4: 396–401.    
  • 199. Benninghoven A, Rüdenauer FG, Werner HW (1987) Secondary ion mass spectrometry: Basic concepts, instrumental aspects, applications, and trends, New York: Wiley.
  • 200. Ninomiya S, Ichiki K, Yamada H, et al. (2009) Precise and fast secondary ion mass spectrometry depth profiling of polymer materials with large Ar cluster ion beams. Rapid Commun Mass Sp 23: 1601–1606.    
  • 201. Hofmann S (2004) Sputter-depth profiling for thin-film analysis. Philos T R Soc A 362: 55–75.    
  • 202. Werner HW, von Rosenstiel AP (1984) Comparison of secondary ion mass spectrometry (SIMS) with electron microprobe analysis (EPMA) and other thin film analytical methods. J Phys Colloq 45: 103–113.
  • 203. Guibert G, Irigaray JL, Moretto P, et al. (2006) Characterisation by PIXE-RBS of metallic contamination of tissues surrounding a metallic prosthesis on a knee. Nucl Instrum Meth B 251: 246–256.    
  • 204. Ahmed NAG, Smith CW (1981) The application of Rutherford backscattering technique to dental hard tissue, In: Devreese JT, Lemmens LF, Van Doren VE, et al., Recent Developments in Condensed Matter Physics, Springer, Boston, MA, 321–328.
  • 205. Lao J, Jallot E, Nedelec JM (2008) Strontium-delivering glasses with enhanced bioactivity: A new biomaterial for antiosteoporotic applications? Chem Mater 20: 4969–4973.    
  • 206. Ferrerz FJ, Alcaire M, Caballero-Hernández J, et al. (2014) Simultaneous quantification of light elements in thin films deposited on Si substrates using proton EBS (Elastic Backscattering Spectroscopy). Nucl Instrum Meth B 332: 449–453.    
  • 207. Karlušic M, Fazinic S, Siketic Z, et al. (2017) Monitoring ion track formation using in situ RBS/c, ToF-ERDA, and HR-PIXE. Materials 10: 1041.    
  • 208. Azis SAA, Kennedy J, Murmu PP, et al. (2014) Structural and compositional characterization of ion beam sputtered hydroxyapatite thin films on Ti-6Al-4V. Asian J Appl Sci 7: 745–752.    
  • 209. Blind O, Klein LH, Dailey B, et al. (2005) Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6Al-4V substrates. Dent Mater 21: 1017–1024.    
  • 210. Dostalova T, Himmlova L, Jelinek M, et al. (1995) Some biological and physical properties of laser deposited hydroxyapatite based films. Cell Mater 5: 3.
  • 211. Varanasi VG, Ilyas A, Velten MF, et al. (2017) Role of hydrogen and nitrogen on the surface chemical structure of bioactive amorphous silicon oxynitride films. J Phys Chem B 121: 8991–9005.    
  • 212. Kim BS, Kim JS, Park YM, et al. (2013) Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell. Mat Sci Eng C-Mater 33: 1554–1560.    
  • 213. Günzel R, Mändl S, Richter E, et al. (1999) Corrosion protection of titanium by deposition of niobium thin films. Surf Coat Tech 116–119: 1107–1110.
  • 214. Brazdes L, Petrascu M, Bordeanu C, et al. (1999) A method for elemental analysis of bones by recoiling atoms in heavy ion beams. Rom J Phys 44: 149–164.
  • 215. Rizzutto MA, Added N, Tabacniks MH, et al. (2006) Teeth characterization using ion beam analysis. J Radioanal Nucl Ch 269: 683–687.    
  • 216. Glauche V, Röhrich J, Bohne W, et al. (2011) Analysis of tooth surface elements by ion beam analysis. J Hard Tissue Biol 20: 99–106.    
  • 217. Mine Y, Nakatani T, Okamoto K, et al. (2014) Impact of biomimetic diamond-like carbon coated titanium on osteoblast and osteoclast differentiation in vitro. J Photopolym Sci Tec 27: 373–378.    
  • 218. Slepička P, Hubáček T, Kolská Z, et al. (2013) The properties and application of carbon nanostructures, In: Yilmaz F, Polymer Science, London: InTech, 175–201.
  • 219. Balaceanu M, Braic M, Macovei D, et al. (2002) Properties of titanium based hard coatings deposited by the cathodic arc method. J Optoelectron Adv M 4: 107–114.
  • 220. Braic M, Braic V, Balaceanu M, et al. (2003) Microchemical and microstructural properties of metallic nitride and carbide hard coatings deposited by arc-evaporation. Rom Rep Phys 55: 275–282.
  • 221. Galle P (1970) Sur une nouvelle méthode d'analyse cellulaire utilisant le phenomene d'emission ionique secondaire. Ann Phys Biol Med 4: 84–94.
  • 222. Lodding A (1997) SIMS of Biomineralized Tissues: Present Trends and Potentials. Adv Dent Res 11: 364–379.    
  • 223. Linton RW, Goldsmith JG (1992) The role of secondary ion mass spectrometry (SIMS) in biological microanalysis: Technique, comparisons and prospects. Biol Cell 74: 147–160.    
  • 224. Malmberg P, Nygren H (2008) Methods for the analysis of the composition of bone tissue, with a focus on imaging mass spectrometry (TOF-SIMS). Proteomics 8: 3755–3762.    
  • 225. Henss A, Rohnke M, El KT, et al. (2013) Applicability of ToF-SIMS for monitoring compositional changes in bone in a long-term animal model. J R Soc Interface 10: 20130332.    
  • 226. Frostell G, Larsson SJ, Lodding A, et al. (1977) SIMS study of element concentration profiles in enamel and dentin. Eur J Oral Sci 85: 18–21.    
  • 227. Norén JG, Lodding A, Odelius H, et al. (1983) Secondary ion mass-spectrometry of human deciduous enamel. Caries Res 17: 496–502.    
  • 228. Almhöjd US, Norén JG, Arvidsson A, et al. (2014) Analysis of carious dentine using FTIR and ToF-SIMS. Oral Health Dent Manag 13: 735–744.
  • 229. Okazaki M, Hirata I, Matsumoto T, et al. (2005) Advantages of TOF-SIMS analysis of hydroxyapatite and fluorapatite in comparison with XRD, HR-TEM and FT-IR. Dent Mater J 24: 508–514.    
  • 230. Franca R, Samani TD, Bayade G, et al. (2014) Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics. J Colloid Interf Sci 420: 182–188.    
  • 231. Lu HB, Campbell CT, Graham DJ, et al. (2000) Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Anal Chem 72: 2886–2894.    
  • 232. Ni M, Ratner BD (2010) Differentiating calcium carbonate polymorphs by surface analysis techniques-an XPS and TOF-SIMS study. Surf Interface Anal 40: 1356–1361.
  • 233. Crobu M, Rossi A, Mangolini F, et al. (2012) Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS. Anal Bioanal Chem 403: 1415–1432.    
  • 234. Lin A, Mcintyre NS, Davidson RD (1992) Studies on the adhesion of glass-ionomer cements to dentin. J Dent Res 71: 1836–1841.    
  • 235. Chuang SF, Kang LL, Liu YC, et al. (2017) Effects of silane- and MDP-based primers application orders on zirconia-resin adhesion-A ToF-SIMS study. Dent Mater 33: 923–933.    
  • 236. Torrisi A, Torrisi V, Tuccitto N, et al. (2010) ToF-SIMS images and spectra of biomimetic calcium silicate-based cements after storage in solutions simulating the effects of human biological fluids. Int J Mass Spectrom 289: 150–161.    
  • 237. Bernsmann F, Lawrence N, Hannig M, et al. (2008) Protein films adsorbed on experimental dental materials: ToF-SIMS with multivariate data analysis. Anal Bioanal Chem 391: 545–554.    
  • 238. Bolles KM, Cheng F, Burk-Rafel J, et al. (2010) Imaging analysis of carbohydrate-modified surfaces using ToF-SIMS and SPRi. Materials 3: 3948–3964.    
  • 239. Viornery C, Chevolot Y, Léonard D, et al. (2002) Surface modification of titanium with phosphonic acid to improve bone bonding: Characterization by XPS and ToF-SIMS. Langmuir 18: 2582–2589.    
  • 240. Eriksson C, Börner K, Nygren H (2006) Studies by imaging TOF-SIMS of bone mineralization on porous titanium implants after 1 week in bone. Appl Surf Sci 252: 6757–6760.    
  • 241. Hryniewicz T, Konarski P, Rokosz K, et al. (2011) SIMS analysis of hydrogen content in near surface layers of AISI 316L SS after electrolytic polishing under different conditions. Surf Coat Tech 205: 4228–4236.    
  • 242. Graham DJ, Castner DG (2012) Multivariate analysis of ToF-SIMS data from multicomponent systems: The why, when, and how. Biointerphases 7: 1–12.    
  • 243. Graham DJ, Wagner MS, Castner DG (2006) Information from complexity: Challenges of TOF-SIMS data interpretation. Appl Surf Sci 252: 6860–6868.    
  • 244. Hercules DM, Craig NL (1976) Composition of fluoridated dental enamel studied by X-ray photoelectron spectroscopy (ESCA). J Dent Res 55: 829–835.    
  • 245. Uchtmann H, Duschner H (1982) Electron spectroscopic studies of interactions between superficially applied fluorides and surface enamel. J Dent Res 61: 423–428.    
  • 246. Garrett SJ, Egdell RG, Rivière JC (1990) A comparative study of oxidation of Ti and CoTi by HREELS and XPS. J Electron Spectrosc 54: 1065–1074.
  • 247. Delamar M (1990) Correlation between the isoelectric point of solid surfaces of metal oxides and X-ray photoelectron spectroscopy chemical shifts. J Electron Spectrosc 54: C11–C14.
  • 248. Herman GS, Gao Y, Tran TT, et al. (2000) X-ray photoelectron diffraction study of an anatase thin film: TiO2(001). Surf Sci 447: 201–211.    
  • 249. Biwer BM, Bernasek SL (1986) A photoelectron and energy-loss spectroscopy study of Ti and its interaction with H2, O2, N2 and NH3. Surf Sci 167: 207–230.    
  • 250. Mccafferty E, Wightman JP (1998) Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf Interface Anal 26: 549–564.    
  • 251. Mccafferty E, Wightman JP (1999) An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium. Appl Surf Sci 143: 92–100.    
  • 252. Ferrer S, Somorjai GA (1980) UPS and XPS studies on the chemisorption of O2, H2 and H2O on reduced and stoichiometric SrTiO3(111) surfaces: The effects of illumination. Surf Sci 94: 41–56.    
  • 253. Carley AF, Chalker PR, Rivière JC, et al. (1987) The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra. J Chem Soc Faraday Trans 1 18: 351–370.
  • 254. Merritt K, Wortman RS, Millard M, et al. (1983) XPS Analysis of 316 LVM corroded in serum and saline. Biomater Med Devices Artif Organs 11: 115–124.    
  • 255. Rokosz K, Hryniewicz T, Matýsek D, et al. (2016) SEM, EDS and XPS analysis of the coatings obtained on titanium after plasma electrolytic oxidation in electrolytes containing copper nitrate. Materials 9: 318–330.    
  • 256. Rokosz K, Hryniewicz T, Raaen S (2017) SEM, EDS and XPS analysis of nanostructured coating formed on NiTi biomaterial alloy by plasma electrolytic oxidation (PEO). Tehnički Vjesnik 24: 193–198.
  • 257. Kang BS, Sul YT, Oh SJ, et al. (2009) XPS, AES and SEM analysis of recent dental implants. Acta Biomater 5: 2222–2229.    
  • 258. Guastaldi FPS, Yoo D, Marin C, et al. (2013) Plasma treatment maintains surface energy of the implant surface and enhances osseointegration. Int J Biomater 2013: 354125.
  • 259. Korotin DM, Bartkowski S, Kurmaev EZ, et al. (2012) Surface characterization of titanium implants treated in hydrofluoric acid. J Biomater Nanobiotechnol 3: 87–91.    
  • 260. Chrcanovic BR, Pedrosa AR, Martins MD (2012) Chemical and topographic analysis of treated surfaces of five different commercial dental titanium implants. Mater Res 15: 372–382.    
  • 261. Sartoretto SC, Alves ATN, Resende RFB, et al. (2015) Early osseointegration driven by the surface chemistry and wettability of dental implants. J Appl Oral Sci 23: 279–287.    
  • 262. He S, Zhou P, Wang L, et al. (2014) Antibiotic decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant. J R Soc Interface 11: 20140169
  • 263. Van Raemdonck W, Ducheyne P, De Meester P (1984) Auger electron spectroscopic analysis of hydroxyapatite coatings on titanium. J Am Ceram Soc 67: 381–384.    
  • 264. Takadama H, Kim HM, Kokubo T, et al. (2001) XPS study of the process of apatite formation on bioactive Ti-6Al-4V alloy in simulated body fluid. Sci Technol Adv Mat 2: 389–396.    
  • 265. Combes C, Rey C, Frèche M (1998) XPS and IR study of dicalcium phosphate dihydrate nucleation on titanium surfaces. Colloid Surface B 11: 15–27.    
  • 266. Wieliczka DM, Spencer P, Legeros RZ (1996) Surface spectroscopy of apatitic materials: Limitations and concerns. J Dent Res 75: 1865–1870.    
  • 267. Konishi K, Kambara M, Noshi H, et al. (1987) X-ray photoelectron spectroscopy (ESCA) study on the surface of hydroxyapatite. J Osaka Dent Univ 21: 1–8.
  • 268. Suetsugu Y, Hirota K, Fujii K, et al. (1996) Compositional distribution of hydroxyapatite surface and interface observed by electron spectroscopy. J Mater Sci 31: 4541–4544.    
  • 269. Kieswetter K, Bauer TW, Brown SA, et al. (1994) Characterisation of calcium phosphate powders by ESCA and EDXA. Biomaterials 15: 183–188.    
  • 270. Coelho PG, Coimbra ME, Ribeiro C, et al. (2009) Physico/chemical characterization and preliminary human histology assessment of a β-TCP particulate material for bone augmentation. Mat Sci Eng C-Mater 29: 2085–2091.    
  • 271. Sosulnikov MI, Teterin YA (1992) X-ray photoelectron studies of Ca, Sr and Ba in their oxides and carbonates. J Electron Spectrosc 102: 101–116.
  • 272. Wu CC, Wei CK, Ho CC, et al. (2015) Enhanced hydrophilicity and biocompatibility of dental zirconia ceramics by oxygen plasma treatment. Materials 8: 684–699.    
  • 273. Cheng Q, Jiang L, Tang Z (2014) Bioinspired layered materials with superior mechanical performance. Accounts Chem Res 47: 1256–1266.    
  • 274. Sennou HE, Lebugle AA, Grégoire GL (1999) X-ray photoelectron spectroscopy study of the dentin-glass ionomer cement interface. Dent Mater 15: 229–237.    
  • 275. Thompson VP, Edler TL, Davis GD (1992) XPS characterisation of dentin and dentin treated with bonding conditioners. J Adhesion 39: 157–171.    
  • 276. Deslandes Y, Pleizier G, Alexander D (1998) XPS and SIMS characterization of segmented polyurethanes containing two different soft segments. Polymer 39: 2362–2366.
  • 277. Yoshida Y, Inoue S (2012) Chemical analyses in dental adhesive technology. Jpn Dent Sci Rev 48: 141–152.    
  • 278. Maachou H, Genet MJ, Aliouche D, et al. (2013) XPS analysis of chitosan-hydroxyapatite biomaterials: From elements to compounds. Surf Interface Anal 45: 1088–1097.    
  • 279. Lawrie G, Keen I, Drew B, et al. (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8: 2533–2541.    
  • 280. Landis WJ, Martin JR (1984) X-ray photoelectron spectroscopy applied to gold-decorated mineral standards of biological interest. J Vac Sci Technol A 2: 1108–1111.    
  • 281. Bianconi A (1980) Surface X-ray absorption spectroscopy: Surface EXAFS and surface XANES. Appl Surf Sci 6: 392–418.    
  • 282. Newville M (2004) Fundamentals of XAFS. Consortium for Advanced Radiation Sources, University of Chicago, USA.
  • 283. Lytle FW (1999) The EXAFS family tree: A personal history of the development of extended X-ray absorption fine structure. J Synchrotron Radiat 6: 123.    
  • 284. George GN, Singh SP, Hoover J, et al. (2009) The chemical forms of mercury in aged and fresh dental amalgam surfaces. Chem Res Toxicol 22: 1761–1764.    
  • 285. Uo M, Asakura K, Tamura K, et al. (2008) XAFS analysis of Ti and Ni dissolution from pure Ti, Ni–Ti alloy, and SUS304 in soft tissues. Chem Lett 37: 958–959.    
  • 286. Lameiras FS, Barrea RA, Silva VV, et al. (2005) Investigation of the incorporation of zirconium into the hydroxyapatite structure of zirconia hydroxyapatite composites and zirconium hydroxyapatite powders. Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering, Ouro Preto, MG.
  • 287. Deng H, Qiu H, Shia G (1995) EXAFS of nanophase zirconia stabilized by yttria. Physica B 208–209: 591–592.
  • 288. Martin RA, Twyman HL, Rees GJ, et al. (2012) An examination of the calcium and strontium site distribution in bioactive glasses through isomorphic neutron diffraction, X-ray diffraction, EXAFS and multinuclear solid state NMR. J Mater Chem 22: 22212.    
  • 289. Onodera Y, Kohara S, Masai H, et al. (2017) Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass. Nat Commun 8: 1–8.    
  • 290. Pickup DM, Moss RM, Qui D, et al. (2009) Structural characterization by X-ray methods of novel antimicrobial gallium-doped phosphate-based glasses. J Chem Phys 130: 064708.    
  • 291. Pickup DM, Neel EAA, Moss RM, et al. (2008) Ti K-edge XANES study of the local environment of titanium in bioresorbable TiO2–CaO–Na2O–P2O5 glasses. J Mater Sci-Mater M 19: 1681–1685.    
  • 292. Ingall ED, Brandes JA, Diaz JM, et al. (2011) Phosphorus K-edge XANES spectroscopy of mineral standards. J Synchrotron Radiat 18: 189–197.    
  • 293. Cosmidis J, Benzerara K, Nassif N, et al. (2015) Characterization of Ca-phosphate biological materials by scanning transmission X-ray microscopy (STXM) at the Ca L2,3-, P L2,3- and C K-edges. Acta Biomater 12: 206–269.
  • 294. Andrews JC, Meirer F, Liu Y, et al. (2011) Transmission X-ray microscopy for full-field nano-imaging of biomaterials. Microsc Res Techniq 74: 671–681.    
  • 295. Moss RM, Pickup DM, Ahmed I, et al. (2008) Structural characteristics of antibacterial bioresorbable phosphate glass. Adv Funct Mater 18: 634–639.    
  • 296. Knowles J (2015) Phosphate based glasses and their application in biomaterials and tissue engineering. Biobone Symposium, Santiago de Compostela, Spain.
  • 297. Liou SC, Chen SY, Lee HY, et al. (2004) Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials 25: 189–196.    
  • 298. Uo M, Asakura K, Yokoyama A, et al. (2005) Analysis of titanium dental implants surrounding soft tissue using X-ray absorption fine structure (XAFS) analysis. Chem Lett 34: 776–777.    
  • 299. Eanes ED, Powers L, Costa JL (l981) Extended X-ray absorption fine structure (EXAFS) studies on calcium in crystalline and amorphous solids of biological interest. Cell Calcium 2: 251–262.
  • 300. Jeynes C, Bailey MJ, Bright NJ, et al. (2012) "Total IBA"-Where are we? Nucl Instrum Meth B 271: 107–118.    
  • 301. Watt F (1997) The nuclear microprobe: A unique instrument. Nucl Instrum Meth B 130: 1–8.    

 

This article has been cited by

  • 1. Barbara Lapinska, Jacek Rogowski, Joanna Nowak, Joseph Nissan, Jerzy Sokolowski, Monika Lukomska-Szymanska, Effect of Surface Cleaning Regimen on Glass Ceramic Bond Strength, Molecules, 2019, 24, 3, 389, 10.3390/molecules24030389

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved