Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Mechanical behaviors and biomedical applications of shape memory materials: A review

1 Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
2 Center for Applied Biomechanics, University of Virginia, Charlottesville, VA 22911, USA
† These two authors contributed equally

A shape memory material (shape memory alloy (SMA) or shape memory polymer (SMP)) can experience large deformation and recover its original shape when exposed to a specific external stimulus. Shape memory materials have drawn significant attention due to their applications in biomedical devices, which typically require appropriate mechanical biocompatibility, including elastic modulus compatibility, adequate strength and fracture toughness, and superior fatigue resistance. In this review, we provide an overview of mechanisms and biomedical applications of some common SMAs and SMPs, experimental evidences on their mechanical biocompatibility, and some key aspects of computational modeling. Challenges and progress in developing new shape memory materials for biomedical applications are also presented.
  Figure/Table
  Supplementary
  Article Metrics

Keywords shape memory alloy; shape memory polymer; biomedical application; mechanical biocompatibility; computational modeling

Citation: Chunsheng Wen, Xiaojiao Yu, Wei Zeng, Shan Zhao, Lin Wang, Guangchao Wan, Shicheng Huang, Hannah Grover, Zi Chen. Mechanical behaviors and biomedical applications of shape memory materials: A review. AIMS Materials Science, 2018, 5(4): 559-590. doi: 10.3934/matersci.2018.4.559

References

  • 1. Huang WM, Ding Z, Wang CC, et al. (2010) Shape memory materials. Mater Today 13: 54–61.
  • 2. Ji F, Zhu Y, Hu J, et al. (2006) Smart polymer fibers with shape memory effect. Smart Mater Struct 15: 1547.    
  • 3. Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metall 2011: 1–14.
  • 4. Cho JW, Kim JW, Jung YC, et al. (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26: 412–416.    
  • 5. Lendlein A, Jiang H, Junger O, et al. (2005) Light-induced shape-memory polymers. Nature 434: 879–882.    
  • 6. Lendlein A, Schmidt AM, Schroeter M, et al. (2005) Shape-memory polymer networks from oligo (ϵ-caprolactone) dimethacrylates. J Polym Sci, Part A: Polym Chem 43: 1369–1381.    
  • 7. Tzou H, Lee HJ, Arnold S (2004) Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mech Adv Mater Struct 11: 367–393.    
  • 8. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10: 20–28.
  • 9. Wei Z, Sandstroröm R, Miyazaki S (1998) Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. J Mater Sci 33: 3743–3762.    
  • 10. El Feninat F, Laroche G, Fiset M, et al. (2002) Shape memory materials for biomedical applications. Adv Eng Mater 4: 91.    
  • 11. Hornbogen E (2006) Comparison of shape memory metals and polymers. Adv Eng Mater 8: 101–106.    
  • 12. Gunes IS, Jana SC (2008) Shape memory polymers and their nanocomposites: A review of science and technology of new multifunctional materials. J Nanosci Nanotechnol 8: 1616–1637.    
  • 13. Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55: 257–315.    
  • 14. Tsuchiya K (2011) Mechanisms and properties of shape memory effect and superelasticity in alloys and other materials: A practical guide, In: Shape Memory and Superelastic Alloys, Woodhead Publishing, 3–14.
  • 15. Leng J, Lan X, Liu Y, et al. (2011) Shape-memory polymers and their composites: Stimulus methods and applications. Prog Mater Sci 56: 1077–1135.    
  • 16. Rousseau IA (2008) Challenges of shape memory polymers: A review of the progress toward overcoming SMP's limitations. Polym Eng Sci 48: 2075–2089.    
  • 17. Es-Souni M, Fischer-Brandies H (2005) Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem 381: 557–567.    
  • 18. Geetha M, Singh A, Asokamani R, et al. (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Prog Mater Sci 54: 397–425.    
  • 19. De Nardo L, Bertoldi S, Tanzi M, et al. (2011) Shape memory polymer cellular solid design for medical applications. Smart Mater Struct 20: 035004.    
  • 20. Robertson S, Pelton A, Ritchie R (2012) Mechanical fatigue and fracture of Nitinol. Int Mater Rev 57: 1–37.    
  • 21. Schroeder T, Wayman C (1977) The two-way shape memory effect and other "training" phenomena in Cu-Zn single crystals. Scr Metall 11: 225–230.
  • 22. Perkins J, Hodgson D (1990) The two-way shape memory effect. Eng Aspects Shape Mem Alloys 1990: 195–206.
  • 23. Huang W, Toh W (2000) Training two-way shape memory alloy by reheat treatment. J Mater Sci Lett 19: 1549–1550.    
  • 24. Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50: 511–678.    
  • 25. Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23: 11–19.    
  • 26. Huang WM, Song CL, Fu YQ, et al. (2013) Shaping tissue with shape memory materials. Adv Drug Delivery Rev 65: 515–535.    
  • 27. Carroll MC, Somsen C, Eggeler G (2004) Multiple-step martensitic transformations in Ni-rich NiTi shape memory alloys. Scr Mater 50: 187–192.    
  • 28. Zhou Y, Fan G, Zhang J, et al. (2006) Understanding of multi-stage R-phase transformation in aged Ni-rich Ti-Ni shape memory alloys. Mater Sci Eng A S438–440: 602–607.
  • 29. Fujishima K, Nishida M, Morizono Y, et al. (2006) Effect of heat treatment atmosphere on the multistage martensitic transformation in aged Ni-rich Ti-Ni alloys. Mater Sci Eng A 438: 489–494.
  • 30. Khalil-Allafi J, Dlouhy A, Eggeler G (2002) Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater 50: 4255–4274.    
  • 31. Wagner MFX, Dey SR, Gugel H, et al. (2010) Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling. Intermetallics 18: 1172–1179.    
  • 32. Kim JI, Liu Y, Miyazaki S (2004) Ageing-induced two-stage R-phase transformation in Ti-50.9at.%Ni. Acta Mater 52: 487–499.
  • 33. Qin Q, Peng H, Fan Q, et al. (2018) Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys. J Alloys Compd 739: 873–881.    
  • 34. Luo J, Bobanga JO, Lewandowski JJ (2017) Microstructural heterogeneity and texture of as-received, vacuum arc-cast, extruded, and re-extruded NiTi shape memory alloy. J Alloys Compd 712: 494–509.    
  • 35. Luo J, Ye WJ, Ma XX, et al. (2018) The evolution and effects of second phase particles during hot extrusion and re-extrusion of a NiTi shape memory alloy. J Alloys Compd 735: 1145–1151.    
  • 36. Jani JM, Leary M, Subic A, et al. (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56: 1078–1113.    
  • 37. Maruyama T, Kubo H (2011) 12-Ferrous (Fe-based) shape memory alloys (SMAs): Properties, processing and applications, In: Shape Memory and Superelastic Alloys, Woodhead Publishing, 141–159.
  • 38. Yamauchi K (2011) 3-Development and commercialization of titanium-nickel (Ti-Ni) and copper (Cu)-based shape memory alloys (SMAs), In: Shape Memory and Superelastic Alloys, Woodhead Publishing, 43–52.
  • 39. Wadood A (2016) Brief overview on nitinol as biomaterial. Adv Mater Sci Eng 2016: 1–9.
  • 40. Buehler WJ, Wang FE (1968) A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng 1: 105–120.    
  • 41. Dikici B, Esen Z, Duygulu O, et al. (2015) Corrosion of metallic biomaterials, In: Advances in Metallic Biomaterials, Springer, 275–303.
  • 42. Mantovani D (2000) Shape memory alloys: Properties and biomedical applications. JOM 52: 36–44.
  • 43. Ryhänen J, Kallioinen M, Tuukkanen J, et al. (1998) In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: Muscle and perineural tissue responses and encapsule membrane thickness. J Biomed Mater Res 41: 481–488.    
  • 44. Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273: 149–160.
  • 45. Morgan N (2004) Medical shape memory alloy applications-the market and its products. Mater Sci Eng A 378: 16–23.    
  • 46. Dahlgren JM, Gelbart D (2009) System for mechanical adjustment of medical implants. Google Patents.
  • 47. Pfeifer R, Müller CW, Hurschler C, et al. (2013) Adaptable orthopedic shape memory implants. Procedia Cirp 5: 253–258.    
  • 48. Maynard RS (1999) Distributed activator for a two-dimensional shape memory alloy. Google Patents.
  • 49. Zider RB, Krumme JF (1988) Eyeglass frame including shape-memory elements. Google Patents.
  • 50. Lim G, Park K, Sugihara M, et al. (1996) Future of active catheters. Sens Actuators A 56: 113–121.    
  • 51. Tung AT, Park BH, Liang DH, et al. (2008) Laser-machined shape memory alloy sensors for position feedback in active catheters. Sens Actuators A 147: 83–92.    
  • 52. Pelton A, Schroeder V, Mitchell M, et al. (2008) Fatigue and durability of Nitinol stents. J Mech Behav Biomed Mater 1: 153–164.    
  • 53. Dye D (2015) Shape memory alloys: Towards practical actuators. Nat Mater 14: 760–761.    
  • 54. Ogawa Y, Ando D, Sutou Y, et al. (2016) A lightweight shape-memory magnesium alloy. Science 353: 368.    
  • 55. Schone AC, Schulz B, Lendlein A (2016) Stimuli responsive and multifunctional polymers: progress in materials and applications. Macromol Rapid Commun 37: 1856–1859.    
  • 56. Cao Y, Xu S, Li L, et al. (2017) Physically cross-linked networks of POSS-capped poly(acrylate amide)s: Synthesis, morphologies, and shape memory behavior. J Polym Sci, Part B: Polym Phys 55: 587–600.    
  • 57. Momtaz M, Razavi-Nouri M, Barikani M (2014) Effect of block ratio and strain amplitude on thermal, structural, and shape memory properties of segmented polycaprolactone-based polyurethanes. J Mater Sci 49: 7575–7584.    
  • 58. Momtaz M, Barikani M, Razavi-Nouri M (2015) Effect of ionic group content on thermal and structural properties of polycaprolactone-based shape memory polyurethane ionomers. Iran Polym J 24: 505–513.    
  • 59. Saed MO, Torbati AH, Starr CA, et al. (2017) Thiol-acrylate main-chain liquid-crystalline elastomers with tunable thermomechanical properties and actuation strain. J Polym Sci, Part B: Polym Phys 55: 157–168.    
  • 60. Yang B, Huang WM, Li C, et al. (2006) Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 47: 1348–1356.    
  • 61. Gyarmati B, Mészár EZ, Kiss L, et al. (2015) Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels. Acta Biomater 22: 32–38.    
  • 62. Guo W, Lu CH, Orbach R, et al. (2015) pH-stimulated DNA hydrogels exhibiting shape-memory properties. Adv Mater 27: 73–78.    
  • 63. Xie H, He MJ, Deng XY, et al. (2016) Design of poly(l-lactide)-poly(ethylene glycol) copolymer with light-induced shape-memory effect triggered by pendant anthracene groups. ACS Appl Mater Interfaces 8: 9431–9439.    
  • 64. Park J, Yoo JW, Seo HW, et al. (2017) Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers. Smart Mater Struct 26: 035048.    
  • 65. Zou H, Weder C, Simon YC (2015) Shape-Memory Polyurethane Nanocomposites with Single Layer or Bilayer Oleic Acid-Coated Fe3O4 Nanoparticles. Macromol Mater Eng 300: 885–892.    
  • 66. Voit W, Ware T, Gall K (2010) Radiation crosslinked shape-memory polymers. Polymer 51: 3551–3559.    
  • 67. Small Iv W, Wilson T, Benett W, et al. (2005) Laser-activated shape memory polymer intravascular thrombectomy device. Opt Express 13: 8204–8213.    
  • 68. Zhang F, Zhou T, Liu Y, et al. (2015) Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci Rep 5: 11152.    
  • 69. Du H, Song Z, Wang J, et al. (2015) Microwave-induced shape-memory effect of silicon carbide/poly(vinyl alcohol) composite. Sens Actuators A 228: 1–8.    
  • 70. Fang Y, Ni Y, Leo SY, et al. (2015) Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nat Commun 6: 7416.    
  • 71. Fang Y, Ni Y, Choi B, et al. (2015) Chromogenic photonic crystals enabled by novel vapor-responsive shape-memory polymers. Adv Mater 27: 3696–3704.    
  • 72. Hu J, Zhu Y, Huang H, et al. (2012) Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37: 1720–1763.    
  • 73. Liu C, Qin H, Mather P (2007) Review of progress in shape-memory polymers. J Mater Chem 17: 1543–1558.    
  • 74. Ahn Sk, Kasi RM (2011) Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv Funct Mater 21: 4543–4549.    
  • 75. Luo X, Mather PT (2010) Triple-shape polymeric composites (TSPCs). Adv Funct Mater 20: 2649–2656.    
  • 76. Wang L, Yang X, Chen H, et al. (2013) Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl Mater Interfaces 5: 10520–10528.    
  • 77. Wang L, Yang X, Chen H, et al. (2013) Multi-stimuli sensitive shape memory poly(vinyl alcohol)-graft-polyurethane. Polym Chem 4: 4461–4468.    
  • 78. Wang L, Wang W, Di S, et al. (2014) Silver-coordination polymer network combining antibacterial action and shape memory capabilities. RSC Adv 4: 32276–32282.    
  • 79. Behl M, Kratz K, Zotzmann J, et al. (2013) Reversible bidirectional shape-memory polymers. Adv Mater 25: 4466–4469.    
  • 80. Zhou J, Turner SA, Brosnan SM, et al. (2014) Shapeshifting: Reversible shape memory in semicrystalline elastomers. Macromolecules 47: 1768–1776.    
  • 81. Miaudet P, Derré A, Maugey M, et al. (2007) Shape and temperature memory of nanocomposites with broadened glass transition. Science 318: 1294–1296.    
  • 82. Behl M, Kratz K, Noechel U, et al. (2013) Temperature-memory polymer actuators. Proc Natl Acad Sci 110: 12555–12559.    
  • 83. Wang L, Di S, Wang W, et al. (2014) Tunable temperature memory effect of photo-cross-linked star PCL-PEG networks. Macromolecules 47: 1828–1836.    
  • 84. Hu J (2007) Shape memory textiles, In: Shape Memory Polymers and Textiles, Woodhead Publishing, 305–337.
  • 85. Yanju L, Haiyang D, Liwu L, et al. (2014) Shape memory polymers and their composites in aerospace applications: A review. Smart Mater Struct 23: 023001.    
  • 86. Baudis S, Behl M, Lendlein A (2014) Smart polymers for biomedical applications. Macromol Chem Phys 215: 2399–2402.    
  • 87. Wache HM, Tartakowska DJ, Hentrich A, et al. (2003) Development of a polymer stent with shape memory effect as a drug delivery system. J Mater Sci Mater Med 14: 109–112.
  • 88. Small W, Buckley PR, Wilson TS, et al. (2007) Shape memory polymer stent with expandable foam: A new concept for endovascular embolization of fusiform aneurysms. IEEE Trans Biomed Eng 54: 1157–1160.    
  • 89. Zheng Y, Li Y, Hu X, et al. (2017) Biocompatible shape memory blend for self-expandable stents with potential biomedical applications. ACS Appl Mater Interfaces 9: 13988.    
  • 90. Kularatne RS, Kim H, Boothby JM, et al. (2017) Liquid crystal elastomer actuators: Synthesis, alignment, and applications. J Polym Sci, Part B: Polym Phys 55: 395–411.
  • 91. Zhang Y, Gao H, Wang H, et al. (2018) Radiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteries. Adv Funct Mater 28: 1705962.    
  • 92. Hager MD, Bode S, Weber C, et al. (2015) Shape memory polymers: Past, present and future developments. Prog Polym Sci 49: 3–33.
  • 93. Kratz K, Voigt U, Lendlein A (2012) Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies. Adv Funct Mater 22: 3057–3065.    
  • 94. Serrano MC, Ameer GA (2012) Recent insights into the biomedical applications of shape-memory polymers. Macromol Biosci 12: 1156–1171.    
  • 95. Small W, Singhal P, Wilson TS, et al. (2010) Biomedical applications of thermally activated shape memory polymers. J Mater Chem 20: 3356–3366.    
  • 96. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296: 1673–1676.    
  • 97. Wischke C, Neffe AT, Steuer S, et al. (2009) Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. J Controlled Release 138: 243–250.    
  • 98. Balk M, Behl M, Wischke C, et al. (2016) Recent advances in degradable lactide-based shape-memory polymers. Adv Drug Delivery Rev 107: 136–152.    
  • 99. Yu K, Ritchie A, Mao Y, et al. (2015) Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials. Procedia Iutam 12: 193–203.    
  • 100. Hardy JG, Palma M, Wind SJ, et al. (2016) Responsive biomaterials: Advances in materials based on shape-memory polymers. Adv Mater 28: 5717–5724.    
  • 101. Chan BQY, Low ZWK, Heng SJW, et al. (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8: 10070–10087.    
  • 102. Mazza E, Ehret AE (2015) Mechanical biocompatibility of highly deformable biomedical materials. J Mech Behav Biomed Mater 48: 100–124.    
  • 103. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8: 3888–3903.    
  • 104. Niinomi M (2010) Tend and present state of titanium alloys with body centered structure for biomedical applications. Bull Iron Steel Inst Jpn 15: 661–670.
  • 105. Tane M, Akita S, Nakano T, et al. (2008) Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals. Acta Mater 56: 2856–2863.    
  • 106. Sadrnezhaad SK, Hosseini SA (2009) Fabrication of porous NiTi-shape memory alloy objects by partially hydrided titanium powder for biomedical applications. Mater Des 30: 4483–4487.    
  • 107. Xiong J, Li Y, Wang X, et al. (2008) Titanium-nickel shape memory alloy foams for bone tissue engineering. J Mech Behav Biomed Mater 1: 269–273.    
  • 108. Oh IH, Nomura N, Hanada S (2002) Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering. Mater Trans 43: 443–446.    
  • 109. Wang M, Jiang M, Liao G, et al. (2012) Martensitic transformation involved mechanical behaviors and wide hysteresis of NiTiNb shape memory alloys. Prog Nat Sci Mater Int 22: 130–138.    
  • 110. Chen J, Wang G, Sun W (2005) Investigation on the fracture behavior of shape memory alloy NiTi. Metall Mater Trans A 36: 941–955.    
  • 111. Kim HY, Hashimoto S, Kim JI, et al. (2004) Mechanical properties and shape memory behavior of Ti-Nb alloys. Mater Trans 45: 2443–2448.    
  • 112. Miyazaki S, Kim H, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438: 18–24.
  • 113. Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4: 445–454.    
  • 114. Mckelvey A, Ritchie R (2001) Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metall Mater Trans A 32: 731–743.    
  • 115. Robertson S, Mehta A, Pelton A, et al. (2007) Evolution of crack-tip transformation zones in superelastic nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis. Acta Mater 55: 6198–6207.    
  • 116. Figueiredo AM, Modenesi P, Buono V (2009) Low-cycle fatigue life of superelastic NiTi wires. Int J Fatigue 31: 751–758.    
  • 117. Yu XJ, Kumar KS (2012) Uniaxial, load-controlled cyclic deformation of recrystallized molybdenum sheet. Mater Sci Eng A 540: 187–197.    
  • 118. Yu XJ, Kumar KS (2016) Cyclic tensile response of Mo-27 at% Re and Mo-0.3 at% Si solid solution alloys. Mater Sci Eng A 676: 312–323.
  • 119. Kim Y (2002) Fatigue properties of the Ti-Ni base shape memory alloy wire. Mater Trans 43: 1703–1706.    
  • 120. Pappas P, Bollas D, Parthenios J, et al. (2007) Transformation fatigue and stress relaxation of shape memory alloy wires. Smart Mater Struct 16: 2560.    
  • 121. Barrabés M, Sevilla P, Planell JA, et al. (2008) Mechanical properties of nickel-titanium foams for reconstructive orthopaedics. Mater Sci Eng C 28: 23–27.    
  • 122. Nayan N, Roy D, Buravalla V, et al. (2008) Unnotched fatigue behavior of an austenitic Ni-Ti shape memory alloy. Mater Sci Eng A 497: 333–340.    
  • 123. Kang G, Song D (2015) Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo-mechanical ones. Theor Appl Mech Lett 5: 245–254.    
  • 124. Zhang X, Liu H, Yuan B, et al. (2008) Superelasticity decay of porous NiTi shape memory alloys under cyclic strain-controlled fatigue conditions. Mater Sci Eng A 481: 170–173.
  • 125. Fulcher J, Lu Y, Tandon G, et al. (2010) Thermomechanical characterization of shape memory polymers using high temperature nanoindentation. Polym Test 29: 544–552.    
  • 126. Schmidt C, Sarwaruddin Chowdhury AM, Neuking K, et al. (2011) Thermo-mechanical behaviour of shape memory polymers, e.g., Tecoflex® by 1WE method: SEM and IR analysis. J Polym Res 18: 1807–1812.
  • 127. Di Prima M, Gall K, Mcdowell D, et al. (2010) Cyclic compression behavior of epoxy shape memory polymer foam. Mech Mater 42: 405–416.    
  • 128. Ahmad M, Xu B, Purnawali H, et al. (2012) High performance shape memory polyurethane synthesized with high molecular weight polyol as the soft segment. Appl Sci 2: 535.    
  • 129. Kang SM, Lee SJ, Kim BK (2012) Shape memory polyurethane foams. eXPRESS Polym Lett 6: 63–69.    
  • 130. Zhang H, Wang H, Zhong W, et al. (2009) A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50: 1596–1601.    
  • 131. Guo J, Wang Z, Tong L, et al. (2015) Shape memory and thermo-mechanical properties of shape memory polymer/carbon fiber composites. Composites Part A 76: 162–171.    
  • 132. Ni QQ, Zhang CS, Fu Y, et al. (2007) Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct 81: 176–184.    
  • 133. Mohr R, Kratz K, Weigel T, et al. (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci U S A 103: 3540–3545.    
  • 134. Xu B, Fu YQ, Ahmad M, et al. (2010) Thermo-mechanical properties of polystyrene-based shape memory nanocomposites. J Mater Chem 20: 3442–3448.    
  • 135. Zheng X, Zhou S, Li X, et al. (2006) Shape memory properties of poly(d,l-lactide)/hydroxyapatite composites. Biomaterials 27: 4288–4295.    
  • 136. Wei H, Zhang F, Zhang D, et al. (2015) Shape-memory behaviors of electrospun chitosan/poly(ethylene oxide) composite nanofibrous membranes. J Appl Polym Sci 132: n/a.
  • 137. Cisse C, Zaki W, Zineb TB (2016) A review of modeling techniques for advanced effects in shape memory alloy behavior. Smart Mater Struct 25: 103001.    
  • 138. Zhang L, Du H, Liu L, et al. (2014) Analysis and design of smart mandrels using shape memory polymers. Composites Part B 59: 230–237.    
  • 139. Mirzaeifar R, DesRoches R, Yavari A (2011) Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension. Continuum Mech Thermodyn 23: 363–385.    
  • 140. Uehara T, Asai C, Ohno N (2009) Molecular dynamics simulation of shape memory behaviour using a multi-grain model. Modell Simul Mater Sci Eng 17: 035011.    
  • 141. Pun GP, Mishin Y (2010) Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys. J Phys Condens Matter 22: 395403.    
  • 142. Zhong Y, Zhu T (2014) Phase-field modeling of martensitic microstructure in NiTi shape memory alloys. Acta Mater 75: 337–347.    
  • 143. Nguyen TD (2013) Modeling shape-memory behavior of polymers. Polym Rev 53: 130–152.    
  • 144. Leclercq S, Lexcellent C (1996) A general macroscopic description of the thermomechanical behavior of shape memory alloys. J Mech Phys Solids 44: 953–980.    
  • 145. Falk F (1980) Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metall 28: 1773–1780.    
  • 146. Paiva A, Savi MA (2006) An overview of constitutive models for shape memory alloys. Math Probl Eng 2006: 39–62.
  • 147. Tanaka K, Nagaki S (1982) A thermomechanical description of materials with internal variables in the process of phase transitions. Ing Arch 51: 287–299.    
  • 148. Liang C, Rogers CA (1990) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 1: 207–234.    
  • 149. Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4: 229–242.    
  • 150. Panico M, Brinson L (2007) A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J Mech Phys Solids 55: 2491–2511.    
  • 151. Bouvet C, Calloch S, Taillard K, et al. (2004) Experimental determination of initial surface of phase transformation of SMA. J Phys IV Fr 115: 29–36.    
  • 152. Arghavani J, Auricchio F, Naghdabadi R, et al. (2010) A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int J Plast 26: 976–991.    
  • 153. Moumni Z, Zaki W, Maitournam H (2009) Cyclic behavior and energy approach to the fatigue of shape memory alloys. J Mech Mater Struct 4: 395–411.    
  • 154. Zhang Q, Yang QS (2012) Recent advance on constitutive models of thermal-sensitive shape memory polymers. J Appl Polym Sci 123: 1502–1508.    
  • 155. Srivastava V, Chester SA, Anand L (2010) Thermally actuated shape-memory polymers: Experiments, theory, and numerical simulations. J Mech Phys Solids 58: 1100–1124.    
  • 156. Liu Y, Gall K, Dunn ML, et al. (2006) Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. Int J Plast 22: 279–313.    
  • 157. Diani J, Liu Y, Gall K (2006) Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polym Eng Sci 46: 486–492.    
  • 158. Li G, Xu W (2011) Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: Testing and constitutive modeling. J Mech Phys Solids 59: 1231–1250.    
  • 159. Baghani M, Naghdabadi R, Arghavani J, et al. (2012) A thermodynamically-consistent 3D constitutive model for shape memory polymers. Int J Plast 35: 13–30.    
  • 160. Wever D, Veldhuizen A, Sanders M, et al. (1997) Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 18: 1115–1120.    
  • 161. Shayan M, Chun Y (2015) An overview of thin film nitinol endovascular devices. Acta Biomater 21: 20–34.    
  • 162. Cui ZD, Man HC, Yang XJ (2005) The corrosion and nickel release behavior of laser surface-melted NiTi shape memory alloy in Hanks' solution. Surf Coat Technol 192: 347–353.    
  • 163. Cheng Y, Cai W, Li H, et al. (2004) Surface characteristics and corrosion resistance properties of TiNi shape memory alloy coated with Ta. Surf Coat Technol 186: 346–352.    
  • 164. Firstov G, Vitchev R, Kumar H, et al. (2002) Surface oxidation of NiTi shape memory alloy. Biomaterials 23: 4863–4871.    
  • 165. Poon R, Yeung K, Liu X, et al. (2005) Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys. Biomaterials 26: 2265–2272.    
  • 166. Chen M, Yang X, Liu Y, et al. (2003) Study on the formation of an apatite layer on NiTi shape memory alloy using a chemical treatment method. Surf Coat Technol 173: 229–234.    
  • 167. Chu C, Hu T, Wu S, et al. (2007) Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation. Acta Biomater 3: 795–806.    
  • 168. Hu T, Wen C, Sun G, et al. (2010) Wear resistance of NiTi alloy after surface mechanical attrition treatment. Surf Coat Technol 205: 506–510.    
  • 169. Walker J, Andani MT, Haberland C, et al. (2014) Additive manufacturing of Nitinol shape memory alloys to overcome challenges in conventional Nitinol fabrication. Proceedings of the ASME 2014 IMECE, V02AT02A037.
  • 170. Ge Q, Sakhaei AH, Lee H, et al. (2016) Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 6: 31110.    
  • 171. Hu N, Burgueño R (2015) Buckling-induced smart applications: Recent advances and trends. Smart Mater Struct 24.

 

This article has been cited by

  • 1. Algirdas Lazauskas, Viktoras Grigaliūnas, Dalius Jucius, Recovery Behavior of Microstructured Thiol-Ene Shape-Memory Film, Coatings, 2019, 9, 4, 267, 10.3390/coatings9040267
  • 2. Safaa Najah Saud Al-Humairi, , Recent Advances in Engineering Materials and Metallurgy [Working Title], 2019, 10.5772/intechopen.86193
  • 3. Helia Kalantari, Mandana Adeli, M. Reza Aboutalebi, Investigation of the Effect of Foaming Agent on the Fabrication of NiTi Foams Using the Self-Propagating, High-Temperature Synthesis Process, Metallurgical and Materials Transactions B, 2019, 10.1007/s11663-019-01700-2

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved