Citation: Dominik Vahle, Robin Böttjer, Kerstin Heyden, Andrea Ehrmann. Conductive polyacrylonitrile/graphite textile coatings[J]. AIMS Materials Science, 2018, 5(3): 551-558. doi: 10.3934/matersci.2018.3.551
| [1] |
Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16: 1151–1170. doi: 10.1002/adma.200400719
|
| [2] |
Subbiah T, Bhat GS, Tock RW, et al. (2005) Electrospinning of nanofibers. J Appl Polym Sci 96: 557–569. doi: 10.1002/app.21481
|
| [3] |
Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Edit 46: 5670–5703. doi: 10.1002/anie.200604646
|
| [4] |
Grothe T, Wehlage D, Böhm T, et al. (2017) Needleless electrospinning of PAN nanofibre mats. Tekstilec 60: 290–295. doi: 10.14502/Tekstilec2017.60.290-295
|
| [5] |
Sabantina L, Mirasol JR, Cordero T, et al. (2018) Investigation of needleless electrospun PAN nanofiber mats. AIP Conf Proc 1952: 020085. doi: 10.1063/1.5032047
|
| [6] |
Wehlage D, Böttjer R, Grothe T, et al. (2018) Electrospinning water-soluble/insoluble polymer blends. AIMS Mater Sci 5: 190–200. doi: 10.3934/matersci.2018.2.190
|
| [7] | Kirstein T, Cottet D, Grzyb J, et al. (2002) Textiles for signal transmission in wearables. Proceedings ACM of First Workshop on Electronic Textiles, San Jose, California. |
| [8] | Lesnikowski J (2011) Textile transmission lines in the modern textronic clothes. Fibres Text East Eur 19: 89–93. |
| [9] |
Locher I, Klemm M, Kirstein T, et al. (2006) Design and characterization of purely textile patch antennas. IEEE T Adv Packaging 29: 777–788. doi: 10.1109/TADVP.2006.884780
|
| [10] | Hertleer C, Grabowska M, van Langenhove L, et al. (2004) The use of electroconductive textile material for the development of a smart suit. Proceedings of World Textile Conference, 4th Autex Conference, Roubaix. |
| [11] | Coosemans J, Hermans B, Puers R (2006) Integrating wireless ECG monitoring in textiles. Sensor Actuat A-Phys 130–131: 48–53. |
| [12] |
Xu PJ, Zhang H, Tao XM (2008) Textile-structured electrodes for electrocardiogram. Text Prog 40: 183–213. doi: 10.1080/00405160802597479
|
| [13] |
Aumann S, Trummer S, Brücken A, et al. (2014) Conceptual design of a sensory shirt for fire-fighters. Text Res J 84: 1661–1665. doi: 10.1177/0040517514525882
|
| [14] |
Meyer J, Arnrich B, Schumm J, et al. (2010) Design and modeling of a textile pressure sensor for sitting posture classification. IEEE Sens J 10: 1391–1398. doi: 10.1109/JSEN.2009.2037330
|
| [15] |
Catrysse M, Puers R, Hertleer C, et al. (2004) Towards the integration of textile sensors in a wireless monitoring suit. Sensor Actuat A-Phys 114: 302–311. doi: 10.1016/j.sna.2003.10.071
|
| [16] |
Zhang H, Tao X, Yu T, et al. (2006) Conductive knitted fabric as large-strain gauge under high temperature. Sensor Actuat A-Phys 126: 129–140. doi: 10.1016/j.sna.2005.10.026
|
| [17] | Zieba J, Frydrysiak M (2006) Textronics-Electrical and electronic textiles. Sensors for breathing frequency measurement. Fibers Text East Eur 14: 43–48. |
| [18] |
Ehrmann A, Heimlich F, Brücken A, et al. (2014) Suitability of knitted fabrics as elongation sensors subject to structure, stitch dimension and elongation direction. Text Res J 84: 2006–2012. doi: 10.1177/0040517514548812
|
| [19] |
Schäl P, Junger IJ, Grimmelsmann N, et al. (2018) Development of graphite-based conductive textile coatings. J Coat Technol Res 15: 1–9. doi: 10.1007/s11998-017-9996-4
|
| [20] |
Shi MJ, Yang C, Song XF, et al. (2017) Stretchable wire-shaped supercapacitors with high energy density for size-adjustable wearable electronics. Chem Eng J 322: 538–545. doi: 10.1016/j.cej.2017.04.065
|
| [21] |
Babaahmadi V, Montazer M, Gao W (2017) Low temperature welding of graphene on PET with silver nanoparticles producing higher durable electro-conductive fabric. Carbon 118: 443–451. doi: 10.1016/j.carbon.2017.03.066
|
| [22] |
Li XT, Hua T, Xu BG (2017) Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core. Carbon 118: 686–698. doi: 10.1016/j.carbon.2017.04.002
|
| [23] | Philips KJ, Ghosh TK (2003) The technology of polypropylene tape yarns: processing and applications. Text Prog 31: 1–53. |
| [24] |
Molina J (2016) Graphene-based fabrics and their applications: a review. RSC Adv 6: 68261. doi: 10.1039/C6RA12365A
|
| [25] |
Neves AIS, Rodrigues DP, de Sanctis A, et al. (2017) Towards conductive textiles: coating polymeric fibres with graphene. Sci Rep 7: 4250. doi: 10.1038/s41598-017-04453-7
|
| [26] |
Karim N, Afroj S, Tan S, et al. (2017) Scalable production of graphene-based wearable E-textiles. ACS Nano 11: 12266–12275. doi: 10.1021/acsnano.7b05921
|
| [27] |
Tadesse MG, Loghin C, Chen Y, et al. (2017) Effect of liquid immersion of PEDOT:PSS-coated polyester fabric on surface resistance and wettability. Smart Mater Struct 26: 065016. doi: 10.1088/1361-665X/aa6f25
|
| [28] |
Alamer FA (2017) A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. J Alloy Compd 702: 266–273. doi: 10.1016/j.jallcom.2017.01.001
|
| [29] |
Mengal N, Arbab AA, Sahito IA, et al. (2017) An electrocatalytic active lyocell fabric cathode based on cationically functionalized and charcoal decorated graphite composite for quasi-solid state dye sensitized solar cell. Sol Energy 155: 110–120. doi: 10.1016/j.solener.2017.06.032
|
| [30] | De Oliveira CRS, Batistella MA, de Souza SMDAGU, et al. (2017) Development of flexible sensors using knit fabrics with conductive polyaniline coating and graphite electrodes. J Appl Polym Sci 134: 44785. |
| [31] |
Gidik H, Dupont D, Bedek G (2018) Development of a radiative heat fluxmeter with a textile substrate. Sensor Actuat A-Phys 271: 162–167. doi: 10.1016/j.sna.2017.12.020
|
| [32] | Trummer S, Ehrmann A, Büsgen A (2017) Development of underwear with integrated 12 channel ECG for men and women. Autex Res J 17: 344–349. |