Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Nanocrystalline diamond coatings: Effects of time modulation bias enhanced HFCVD parameters

1 CNRS, Université de Bordeaux, ICMCB, UMR 5026, F-33600 Pessac, France
2 Université de Bordeaux, Placamat, UMS 3626, F-33600 Pessac, France

Topical Section: Thin films, surfaces and interfaces

Nanocrystalline diamond NCD coatings could improve the performances of cutting tools if the adhesion on cobalt-cemented tungsten carbide WC–Co substrates was optimized and maintained during diamond deposit. In this study, a time modulated polarized growth process during diamond hot filament chemical vapor deposition (HFCVD) method was used. NCD coatings were deposited on cobalt-cemented tungsten carbide (WC–10% Co) substrates previously coated with tantalum or zirconium nitride–molybdenum bilayer as interlayer systems to control carbon and cobalt diffusion. Continuous films consisted of diamond clusters. Their size decreased when the applied bias voltage increased and substrate temperature decreased. Raman analyses confirmed the reduction of crystallite size and formation of nanocrystalline diamond films by time modulated biased substrate HFCVD process. Scratch tests showed that the NCD/interlayer systems/WC–10% Co displayed very good film adhesion interesting for cutting tools applications compared to NCD/WC–10% Co. In addition using an interlayer system could offer additional protection when diamond coating was deteriorated. This technique seems to be promising for industrial applications in the field of machining tools when increasing the thickness of the diamond layer by only extending the time modulated deposition process.
  Figure/Table
  Supplementary
  Article Metrics

Keywords NCD; HFCVD; time modulated polarized growth; Raman; AES; adhesion

Citation: Abbas Hodroj, Lionel Teulé-Gay, Michel Lahaye, Jean-Pierre Manaud, Angeline Poulon-Quintin. Nanocrystalline diamond coatings: Effects of time modulation bias enhanced HFCVD parameters. AIMS Materials Science, 2018, 5(3): 519-532. doi: 10.3934/matersci.2018.3.519

References

  • 1. Williams OA, Nesladek M, Daenen M, et al. (2008) Growth, electronic properties and applications of nanodiamond. Diam Relat Mater 17: 1080–1088.    
  • 2. Bruhne K, Kumar KV, Fecht HJ, et al. (2005) Nanocrystalline HF-CVD-grown diamond and its industrial applications. Rev Adv Mater Sci 10: 224–228.
  • 3. Philip J, Hess P, Feygelson T, et al. (2003) Elastic, mechanical and thermal properties of nanocrystalline diamond films. J Appl Phys 93: 2164–2171.    
  • 4. Mazellier JP, Mermoux M, Andrieu F, et al. (2011) Enhanced thermal performances of silicon-on-diamond wafers incorporating ultrathin nanocrystalline diamond and silicon layers: Raman and micro-Raman analysis. J Appl Phys 110: 084901.    
  • 5. Erdemir A, Fenske GR, Krauss AR, et al. (1999) Tribological properties of nanocrystalline diamond films. Surf Coat Technol 120–121: 565–572.
  • 6. Yang W, Auciello O, Butler JE, et al. (2002) DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mater 1: 253–257.    
  • 7. Hollman P, Wänstrand O, Hogmark S (1998) Friction properties of smooth nanocrystalline diamond coatings. Diam Relat Mater 7: 1471–1477.    
  • 8. Olszyna A, Smolik J (2004) Nanocrystalline diamond-like carbon coatings produced on the Si3N4–TiC composites intended for the edges of cutting tools. Thin Solid Films 459: 224–227.    
  • 9. Hu J, Chou YK, Thompson RG, et al. (2007) Characterizations of nano-crystalline diamond coating cutting tools. Surf Coat Technol 202: 1113–1117.    
  • 10. Nitta Y, Hiroki O, Une K (2005) Cutting performance of a nanocrystalline diamond-coated tool. New Diam Front Carbon Technol 15: 195–203.
  • 11. Sein H, Ahmed W, Rego C (2002) Application of Diamond Coatings on Small Dental Tools. Diam Relat Mater 11: 731–735.    
  • 12. Polini R (2006) Chemically vapour deposited diamond coatings on cemented tungsten carbides: Substrate pretreatments, adhesion and cutting performance. Thin Solid Films 515: 4–13.    
  • 13. Mallika K, Komanduri R (1999) Diamond coatings on cemented tungsten carbide tools by low-pressure microwave CVD. Wear 224: 245–266.    
  • 14. Deuerler F, Van den Berg H, Tabersky R, et al. (1996) Pretreatment of substrate surface for improved adhesion of diamond films on hard metal cutting tools. Diam Relat Mater 5: 1478–1489.    
  • 15. Li YS, Tang Y, Yang Q, et al. (2008) Al-enhanced nucleation and adhesion of diamond films on WC–Co substrates. Int J Refract Met H 26: 465–471.    
  • 16. Xu Z, Lev L, Lukitsch M, et al. (2007) Effects of surface pretreatments on the deposition of adherent diamond coatings on cemented tungsten carbide substrates. Diam Relat Mater 6: 461–466.
  • 17. Manaud JP, Poulon A, Gomez S, et al. (2007) A comparative study of CrN, ZrN, NbN and TaN layers as cobalt diffusion barriers for CVD diamond deposition on WC–Co tools. Surf Coat Technol 202: 222–231.    
  • 18. Poulon-Quintin A, Faure C, Teulé-Gay L, et al. (2010) Bilayer systems of tantalum or zirconium nitrides and molybdenum for optimized diamond deposition. Thin Solid Films 519: 1600–1605.    
  • 19. Sarangi SK, Chattopadhyay A, Chattopadhyay AK (2008) Effect of Pretreatment, Seeding and Interlayer on Nucleation and Growth of HFCVD Diamond Films on Cemented Carbide Tools. Int J Refract Met H 26: 220–231.    
  • 20. Buijnsters JG, Vázquez L, Van Dreumel GWG, et al. (2010) Enhancement of the nucleation of smooth and dense nanocrystalline diamond films by using molybdenum seed layers. J Appl Phys 108: 103514.    
  • 21. Hernández Guillén FJ, Janischowsky K, Ebert W, et al. (2004) Nanocrystalline diamond films for mechanical applications. Phys Status Solidi A 201: 2553–2557.    
  • 22. Liao MY, Meng XM, Zhou XT, et al. (2002) Nanodiamond formation by hot-filament chemical vapor deposition on carbon ions bombarded Si. J Cryst Growth 236: 85–89.    
  • 23. Almeida FA, Amaral M, Oliveira FJ, et al. (2007) Nano to micrometric HFCVD diamond adhesion strength to Si3N4. Vacuum 81: 1443–1447.    
  • 24. Lee HJ, Li H, Jeon H, et al. (2010) Some novel aspects of nanocrystalline diamond nucleation and growth by direct current plasma assisted chemical vapor deposition. Diam Relat Mater 19: 1393–1400.    
  • 25. Lisi N, Giorgi R, Dikonimos T, et al. (2010) Graphitized filament plasma enhanced CVD deposition of nanocrystalline diamond. Diam Relat Mater 19: 1382–1386.    
  • 26. Williams OA, Daenen M, D'Haen J, et al. (2006) Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diam Relat Mater 15: 654–658.    
  • 27. May PW, Smith JA, Mankelevich YA (2006) Deposition of NCD films using hot filament CVD and Ar/CH4/H2 gas mixtures. Diam Relat Mater 15: 345–352.    
  • 28. Yang TS, Lai JY, Wong MS, et al. (2002) Substrate bias effect on the formation of nanocrystalline diamond films by microwave plasma-enhanced chemical vapor deposition. J Appl Phys 92: 2133–2138.
  • 29. Faure C, Teulé-Gay L, Manaud JP, et al. (2013) Mechanisms of time-modulated polarized nano-crystalline diamond growth. Surf Coat Technol 222: 97–103.    
  • 30. Manaud JP, Poulon-Quintin A, Teulé-Gay L, et al. (2010) Procédé de fabrication de matériaux composites diamantés. International Patent WO/2010/076423.
  • 31. Park JK, Lee WS, Baik YJ, et al. (2003) The pronounced grain size refinement at the edge position of the diamond-coated WC–Co inserts under microwave plasma with negative bias. Diam Relat Mater 12: 1657–1662.    
  • 32. Haubner R, Okoli S, Lux B (1992) The importance of the substrate surface temperature and other parameters in hot-filament diamond synthesis. Int J Refract Met H 11: 259–269.    
  • 33. Wei Q, Yang T, Zhou KC, et al. (2013) Effect of sputtered Mo interlayers on Si (100) substrates for the deposition of diamond film by hot filament chemical vapor deposition. Surf Coat Technol 232: 456–463.    
  • 34. Li YS, Tang Y, Yang Q, et al. (2010) Ultrathin W–Al Dual Interlayer Approach to Depositing Smooth and Adherent Nanocrystalline Diamond Films on Stainless Steel. ACS Appl Mater Inter 2: 335–338.    
  • 35. Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4: 385–393.    
  • 36. Casiraghi C, Ferrari AC, Robertson J (2005) Raman spectroscopy of hydrogenated amorphous carbons. Phys Rev B 72: 085401.    
  • 37. Kuzmany H, Pfeiffer R, Salk N, et al. (2004) The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films. Carbon 42: 911–917.    
  • 38. Schügerl FB, Kuzmany H (1981) Optical modes of trans-polyacetylene. J Chem Phys 74: 953–958.    
  • 39. Roy M, George VC, Dua AK, et al. (2002) Detection of nanophase at the surface of HFCVD grown diamond films using surface enhanced Raman spectroscopic technique. Diam Relat Mater 11: 1858–1862.    
  • 40. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructures, diamond-like carbon and nanodiamond. Philos T R Soc A 362: 2477–2512.    
  • 41. Klauser F, Steinmüller‐Nethl D, Kaindl R, et al. (2010) Raman studies of nano- and ultra-nanocrystalline diamond films grown by hot-filament CVD. Chem Vapor Depos 16: 127–135.    
  • 42. Riedel R (2000) Handbook of Ceramic Hard Materials, Weinheim, Germany: Wiley-VCH Publishers.

 

This article has been cited by

  • 1. A. Gaydaychuk, S. Linnik, Tribological and mechanical properties of diamond films synthesized with high methane concentration, International Journal of Refractory Metals and Hard Materials, 2019, 105057, 10.1016/j.ijrmhm.2019.105057

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved