
AIMS Materials Science, 2018, 5(1): 127144. doi: 10.3934/matersci.2018.1.127.
Research article Topical Section
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Cohesive delamination and frictional contact on joining surface via XFEM
1 Dipartimento di Ingegneria Civile Ambientale Aerospaziale e dei Materiali, Universitá of Palermo, Viale delle Scienza, 90128 Palermo, Italy
2 Dipartimento di Ingegneria Innovazione Industriale e Digitale, Universitá of Palermo, Viale delle Scienza, 90128 Palermo, Italy
Received: , Accepted: , Published:
Topical Section: Thin films, surfaces and interfaces
Keywords: joined solids; interface; XFEM; cohesivefrictional; delamination
Citation: Francesco Parrinello, Giuseppe Marannano. Cohesive delamination and frictional contact on joining surface via XFEM. AIMS Materials Science, 2018, 5(1): 127144. doi: 10.3934/matersci.2018.1.127
References:
 1. Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8: 100–104.
 2. Barenblatt G (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7: 55–129.
 3. Allix O, Blanchard L (2006) Mesomodeling of delamination: towards industrial applications. Compos Sci Technol 66: 731–744.
 4. Allix O, Ladevéze P (1992) Interlaminar interface modeling for the prediction of delamination. Compos Struct 22: 235–242.
 5. Borino G, Fratini L, Parrinello F (2009) Mode I failure modeling of friction stir welding joints. Int J Adv Manuf Tech 41: 498–503.
 6. Corigliano A (1993) Formulation, identification and use of interface models in the numerical analysis of composite delamination. Int J Solids Struct 30: 2779–2811.
 7. Mi Y, Crisfield MA, Davies GAO, et al. (1998) Progressive delamination using Interface elements. J Compos Mater 32: 1246–1272.
 8. Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Meth Eng 50: 1701–1736.
 9. Qiu Y, Crisfield MA, Alfano G (2001) An interface element formulation for the simulation of delamination with buckling. Eng Fract Mech 68: 1755–1776.
 10. Zou Z, Reid SR, Li S (2003) A continuum damage model for delamination in laminated composites. J Mech Phys Solids 51: 333–356.
 11. Point N, Sacco E (1996) A delamination model for laminated composites. Int J Solids Struct 33: 483–509.
 12. Mortara G, Boulon M, Ghionna VN (2002) A 2D constitutive model for cyclic interface behaviour. Int J Numer Anal Met 26: 1071–1096.
 13. Carol I, López CM, Roa O (2001) Micromechanical analysis of quasibrittle materials using fracturebased interface elements. Int J Numer Meth Eng 52: 193–215.
 14. Cocchetti G, Maier G, Shen XP (2002) Piecewise linear models for interfaces and mixed mode cohesive cracks. CMESComp Model Eng 3: 279–298.
 15. Tvergaard V (1990) Effect of fiber debonding in a whiskerreinforced metal. Mater Sci Eng 125: 203–213.
 16. Gambarotta L (2004) Frictiondamage coupled model for brittle materials. Eng Fract Mech 71: 829–836.
 17. Gambarotta L, Logomarsino S (1997) Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its application. Earthq Eng Struct D 26: 423–439.
 18. Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesivezone model. Int J Numer Meth Eng 68: 542–582.
 19. Parrinello F, Failla B, Borino G (2009) Cohesivefrictional interface constitutive model. Int J Solids Struct 46: 2680–2692.
 20. Parrinello F, Marannano G, Borino G, et al. (2013) Frictional effect in mode II delamination: Experimental test and numerical simulation. Eng Fract Mech 110: 258–269.
 21. Parrinello F, Marannano G, Borino G (2016) A thermodynamically consistent cohesivefrictional interface model for mixed mode delamination. Eng Fract Mech 153: 61–79.
 22. Simone A (2004) Partition of unitybased discontinuous elements for interface phenomena: computational issues. Int J Numer Meth Bio 20: 465–478.
 23. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45: 601–620.
 24. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46: 131–150.
 25. Sukumar N, Moës N, Moran N, et al. (2000) Extended finite element method for threedimensional crack modelling. Int J Numer Meth Eng 48: 1549–1570.
 26. Belytschko T, Moës N, Usui S, et al. (2001) Arbitrary discontinuities in finite elements. Int J Numer Meth Eng 50: 993–1013.
 27. Sukumar N, Chopp DL, Moës N, et al. (2000) Modelling holes and inclusions by level sets in the extended finite element method. Comput Method Appl M 190: 6183–6200.
 28. Belytschko T, Moës N (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69: 813–883.
 29. Wells GN, Sluys LJ (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Meth Eng 50: 2667–2682.
 30. Zi G, Belytschko T (2003) New cracktip elements for XFEM and applications to cohesive cracks. Int J Numer Meth Eng 57: 2221–2240.
 31. Hettich T, Ramm E (2006) Interface material failure modeled by the extended finiteelement method and level sets. Comput Method Appl M 195: 4753–4767.
 32. Khoei AR, Nikbakht M (2007) An enriched finite element algorithm for numerical computation of contact friction problems. Int J Mech Sci 49: 183–199.
 33. Moës N, Cloirec M, Cartraud P, et al. (2003) A computational approach to handle complex microstructure geometries. Comput Method Appl M 192: 3163–3177.
 34. Drau K, Chevaugeon N, Moës N (2010) Studied XFEM enrichment to handle material interfaces with higher order finite element. Comput Method Appl M 199: 1922–1936.
 35. Lemaitre J, Chaboche JL (1990) Mechanics of solids materials, Cambridge University Press.
 36. Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech An 13: 167–178.
 37. Coleman B (1971) Thermodynamics of Materials with Memory, CISM, Springer.
 38. Zienkiewicz OC, Taylor RL (2000) The finite element method: solid mechanics, ButterworthHeinemann.
 39. Paggi M, Wriggers P (2016) Nodetosegment and nodetosurface interface finite elements for fracture mechanics. Comput Method Appl M 300: 540–560.
 40. Nguyen VP, Nguyen CT, Bordas S, et al. (2016) Modelling interfacial cracking with nonmatching cohesive interface elements. Comput Mech 58: 731–746.
This article has been cited by:
 1. F. Parrinello, G. Borino, Non associative damage interface model for mixed mode delamination and frictional contact, European Journal of Mechanics  A/Solids, 2019, 10.1016/j.euromechsol.2019.03.012
 2. Francesco Parrinello, Guido Borino, An extrinsic interface developed in an equilibrium based finite element formulation, Procedia Structural Integrity, 2019, 18, 616, 10.1016/j.prostr.2019.08.207
 3. Francesco Parrinello, Vincenzo Gulizzi, Ivano Benedetti, A Model for LowCycle Fatigue in MicroStructured Materials, Key Engineering Materials, 2019, 827, 134, 10.4028/www.scientific.net/KEM.827.134
 4. Francesco Parrinello, Hybrid Equilibrium Finite Element Formulation for Cohesive Crack Propagation, Key Engineering Materials, 2019, 827, 104, 10.4028/www.scientific.net/KEM.827.104
 5. Francesco Parrinello, Guido Borino, , Proceedings of XXIV AIMETA Conference 2019, 2020, Chapter 35, 419, 10.1007/9783030410575_35
 6. Francesco Parrinello, Hybrid equilibrium element with interelement interface for the analysis of delamination and crack propagation problems, International Journal for Numerical Methods in Engineering, 2020, 10.1002/nme.6531
Reader Comments
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *