Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Coherent spin dynamics in a helical arrangement of molecular dipoles

1 GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid, Spain
2 Institute for Materials Science, Dresden University of Technology, 01062 Dresden, Germany
3 Cognitec Systems GmbH, Großenhainer Str. 101, 01127 Dresden, Germany
4 Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
5 Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany

Special Issues: Organic and Molecular Spintronics

Experiments on electron transport through helical molecules have demonstrated the appearance of high spin selectivity, in spite of the rather weak spin-orbit coupling in organic compounds. Theoretical models usually rely on different mechanisms to explain these experiments, such as large spin-orbit coupling, quantum dephasing, the role of metallic contacts, or the interplay between a helicity-induced spin-orbit coupling and a strong dipole electric field. In this work we consider the coherent electron dynamics in the electric field created by the helical arrangement of dipoles of the molecule backbone, giving rise to an effective spin-orbit coupling. We calculate the spin projection onto the helical axis as a figure of merit for the assessment of the spin dynamics in a very long helical molecule. We prove that the spin projection reaches a steady state regime after a short transient. We compare its asymptotic value for different initial conditions, aiming to better understand the origin of the spin selectivity found in experiments.
  Article Metrics

Keywords spin polarized transport; helical molecules; spin sensitivity; nanoscale materials; spin-orbit coupling

Citation: Elena Díaz, Rafael Gutiérrez, Christopher Gaul, Gianaurelio Cuniberti, Francisco Domínguez-Adame. Coherent spin dynamics in a helical arrangement of molecular dipoles. AIMS Materials Science, 2017, 4(5): 1052-1061. doi: 10.3934/matersci.2017.5.1052


  • 1. Göhler B, Hamelbeck V, Markus TZ, et al. (2011) Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331: 894–897.    
  • 2. Xie Z, Markus TZ, Cohen SR, et al. (2011) Spin specific electron conduction through DNA oligomers. Nano Lett 11: 4652–4655.    
  • 3. Mishra D, Markus TZ, Naaman R, et al. (2013) Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Proc Nat Acad Sci USA 110: 14872–14876.    
  • 4. Kettner M, Gohler B, Zacharias H, et al. (2015) Spin filtering in electron transport through chiral oligopeptides. J Phys Chem C 119: 14542–14547.    
  • 5. Mondal PC, Fontanesi C, Waldeck DH, et al. (2015) Field and chirality effects on electrochemical charge transfer rates: Spin dependent electrochemistry. ACS Nano 9: 3377–3384.    
  • 6. Rosenberg RA, Mishra D, Naaman R (2015) Chiral selective chemistry induced by natural selection of spin-polarized electrons. Angew Chem Int Edit 54: 7295–7298.    
  • 7. Einati H, Mishra D, Friedman N, et al. (2015) Light-controlled spin filtering in bacteriorhodopsin. Nano Lett 15: 1052–1056.    
  • 8. Ben Dor O, Yochelis S, Mathew SP, et al. (2013) A Chiral-based magnetic memory device without a permanent magnet. Nat Commun 4: 2256.
  • 9. Michaeli K, Varade V, Naaman R, et al. (2017) A new approach towards spintronics-Spintronics with no magnets. J Phys-Condens Mat 29: 103002.    
  • 10. Kiran V, Mathew SP, Cohen SR, et al. (2016) Helicenes-A new class of organic spin filter. Adv Mater 28: 1957–1962.    
  • 11. Yeganeh S, Ratner MA, Medina E, et al. (2009) Chiral electron transport: Scattering through helical potentials. J Chem Phys 131: 014707.    
  • 12. Medina E, Lopez F, Ratner M, et al. (2012) Chiral molecular films as electron polarizers and polarization modulators. EPL 99: 17006.    
  • 13. Gutiérrez R, Díaz E, Naaman R, et al. (2012) Spin-selective transport through helical molecular systems. Phys Rev B 85: 081404.    
  • 14. Guo AM, Sun QF (2012) Spin-selective transport of electrons in DNA double helix. Phys Rev Lett 108: 218102.    
  • 15. Gutierrez R, Díaz E, Gaul C, et al. (2013) Modeling Spin transport in helical fields: Derivation of an effective low-dimensional Hamiltonian. J Phys Chem C 117: 22276–22284.    
  • 16. Vager D, Vager Z (2012) Spin order without magnetism: A new phase of spontaneously broken symmetry in condensed matter. Phys Lett A 376: 1895–1897.    
  • 17. Gersten J, Kaasbjerg K, Nitzan A (2013) Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling. J Chem Phys 139: 114111–114130.    
  • 18. Guo AM, Díaz E, Gaul C, et al. (2014) Contact effects in spin transport along double-helical molecules. Phys Rev B 89: 205434.    
  • 19. Matityahu S, Utsumi Y, Aharony A, et al. (2016) Spin-dependent transport through a chiral molecule in the presence of spin-orbit interaction and nonunitary effects. Phys Rev B 93: 075407.    
  • 20. Guo AM, Sun QF (2012) Sequence-dependent spin-selective tunneling along double-stranded DNA. Phys Rev B 86: 115441.    
  • 21. Guo AM, Sun QF (2014) Spin-dependent electron transport in protein-like single-helical molecules. Proc Natl Acad Sci USA 111: 11658.    
  • 22. Pan TR, Guo AM, Sun QF (2016) Spin-polarized electron transport through helicene molecular junctions. Phys Rev B 94: 235448.    
  • 23. Jackson JD (1999) Classical Electrodynamics, Third Edition, New York: Wiley, 146.
  • 24. Greiner W (2000) Relativistic Quantum Mechanics, Berlin: Springer.
  • 25. Díaz E, Malyshev AV, Domínguez-Adame F (2007) Interband optical transitions in DNA-like systems. Phys Rev B 76: 205117.    


This article has been cited by

  • 1. P. Albares, E. Díaz, Jose M. Cerveró, F. Domínguez-Adame, E. Diez, P. G. Estévez, Solitons in a nonlinear model of spin transport in helical molecules, Physical Review E, 2018, 97, 2, 10.1103/PhysRevE.97.022210
  • 2. E Díaz, P Albares, P G Estévez, J M Cerveró, C Gaul, E Diez, F Domínguez-Adame, Spin dynamics in helical molecules with nonlinear interactions, New Journal of Physics, 2018, 20, 4, 043055, 10.1088/1367-2630/aabb91
  • 3. Elena Díaz, Francisco Domínguez-Adame, Rafael Gutierrez, Gianaurelio Cuniberti, Vladimiro Mujica, Thermal Decoherence and Disorder Effects on Chiral-Induced Spin Selectivity, The Journal of Physical Chemistry Letters, 2018, 5753, 10.1021/acs.jpclett.8b02196
  • 4. E. Díaz, A. Contreras, J. Hernández, F. Domínguez-Adame, Effective nonlinear model for electron transport in deformable helical molecules, Physical Review E, 2018, 98, 5, 10.1103/PhysRevE.98.052221

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Francisco Domínguez-Adame, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved