Citation: Murat Aycibin, Naciye ECE. First-principles calculation of the electronic and optical properties of BiRhO3 compound[J]. AIMS Materials Science, 2017, 4(4): 894-904. doi: 10.3934/matersci.2017.4.894
| [1] |
Hippel Av, Breckenridge RG, Chesley FG, et al. (1946) High dielectric constant ceramics. Ind Eng Chem 38: 1097–1109. doi: 10.1021/ie50443a009
|
| [2] | Wul B, Goldman JM (1945) Ferroelectric switching in BaTiO3 ceramics. C R Acad Sci URSS 51: 21. |
| [3] | Ye ZG (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, properties and applications, Abington Hall, Abington: Woodhead Publishing Limited. |
| [4] |
Haertling GH (1999) Ferroelectric ceramics: History and technology. J Am Ceram Soc 82: 797–818. doi: 10.1111/j.1151-2916.1999.tb01840.x
|
| [5] |
Izyumskaya N, Alivov Y, Morkoc H (2009) Oxides, Oxides, and More Oxides: High-κ Oxides, Ferroelectrics, Ferromagnetics, and Multiferroics. Crit Rev Solid State 34: 89–179. doi: 10.1080/10408430903368401
|
| [6] |
Rodel J, Jo W, Seifert KTP, et al. (2009) Perspective on the Development of Lead-free Piezoceramics. J Am Ceram Soc 92: 1153–1177. doi: 10.1111/j.1551-2916.2009.03061.x
|
| [7] |
Baettig P, Schelle CF, LeSar R, et al. (2005) Theoretical prediction of new high-performance lead-free piezoelectrics. Chem Mater 17: 1376–1380. doi: 10.1021/cm0480418
|
| [8] | Zylberberg J, Belik AA, Takayama-Muromachi E, et al. (2007) Bismuth aluminate BiAlO3: A new lead-free High-TC piezo-/ferroelectric. 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics, 665–666. |
| [9] |
Zou TT, Wang XH, Wang H, et al. (2008) Bulk dense fine-grain (1−x)BiScO3−xPbTiO3 ceramics with high piezoelectric coefficient. Appl Phys Lett 93: 192913. doi: 10.1063/1.2995861
|
| [10] |
Yaakob MK, Taib MFM, Deni MSM, et al. (2013) First principle study on structural, elastic and electronic properties of cubic BiFeO3. Ceram Int 39: S283–S286. doi: 10.1016/j.ceramint.2012.10.078
|
| [11] |
Wang J, Neaton JB, Zheng H, et al. (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299: 1719–1722. doi: 10.1126/science.1080615
|
| [12] |
Catalan G, Scott JF (2009) Physics and Applications of Bismuth Ferrite. Adv Mater 21: 2463–2485. doi: 10.1002/adma.200802849
|
| [13] |
Chi ZH, Xiao CJ, Feng SM, et al. (2005) Manifestation of ferroelectromagnetism in multiferroic BiMnO3. J Appl Phys 98: 103519. doi: 10.1063/1.2131193
|
| [14] |
Hill NA, Rabe KM (1999) First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite. Phys Rev B 59: 8759–8769. doi: 10.1103/PhysRevB.59.8759
|
| [15] |
Belik AA, Iikubo S, Kodama K, et al. (2006) Neutron powder diffraction study on the crystal and magnetic structures of BiCoO3. Chem Mater 18: 798–803. doi: 10.1021/cm052334z
|
| [16] |
Hill NA, Battig P, Daul C (2002) First principles search for multiferroism in BiCrO3. J Phys Chem B 106: 3383–3388. doi: 10.1021/jp013170m
|
| [17] |
Dragomir M, Valant M (2013) Synthesis peculiarities of BiVO3 perovskite. Ceram Int 39: 5963–5966. doi: 10.1016/j.ceramint.2012.12.035
|
| [18] |
Belik AA (2012) Polar and nonpolar phases of BiMO3: A review. J Solid State Chem 195: 32–40. doi: 10.1016/j.jssc.2012.01.025
|
| [19] |
Yi W, Liang QF, Matsushita Y, et al. (2013) Crystal structure and properties of high-pressure-synthesized BiRhO3, LuRhO3, and NdRhO3. J Solid State Chem 200: 271–278. doi: 10.1016/j.jssc.2013.01.035
|
| [20] |
Li X, Liu QQ, Han W, et al. (2013) Synthesis and Structural Stability of BiRhO3 at High Pressure. Int J Mod Phys B 27: 1362021. doi: 10.1142/S021797921362021X
|
| [21] |
Kennedy BJ (1997) Structural trends in Bi containing pyrochlores: The structure of Bi2Rh2O7−δ. Mater Res Bull 32: 479–483. doi: 10.1016/S0025-5408(97)00008-1
|
| [22] |
Longo JM, Raccah PM, Kafalas JA, et al. (1972) Preparation and Structure of a Pyrochlore and Perovskite in the BiRhO3+x System. Mater Res Bull 7: 137–146. doi: 10.1016/0025-5408(72)90270-X
|
| [23] |
Andersen OK (1975) Linear methods in band theory. Phys Rev B 12: 3060. doi: 10.1103/PhysRevB.12.3060
|
| [24] | Blaha P, Schwarz K, Madsen G, et al. (2001) An Augmented Plane Wave Plus Local Orbital Program for Calculating the Crystal Properties, ISBN 3-9501031-1-2. |
| [25] |
Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77: 3865–3868. doi: 10.1103/PhysRevLett.77.3865
|
| [26] |
Wu ZG, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73: 235116. doi: 10.1103/PhysRevB.73.235116
|
| [27] |
Perdew JP, Ruzsinszky A, Csonka GI, et al. (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100: 136406. doi: 10.1103/PhysRevLett.100.136406
|
| [28] |
Oka K, Yamada I, Azuma M, et al. (2008) Magnetic ground-state of perovskite PbVO3 with large tetragonal distortion. Inorg Chem 47: 7355–7359. doi: 10.1021/ic800649a
|
| [29] |
Birch F (1947) Finite Elastic Strain of Cubic Crystals. Phys Rev 71: 809–824. doi: 10.1103/PhysRev.71.809
|
| [30] |
Kokalj A (2003) Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comp Mater Sci 28: 155–168. doi: 10.1016/S0927-0256(03)00104-6
|