Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Preparation of gold-containing binary metal clusters by co-deposition-precipitation method and for hydrogenation of chloronitrobenzene

1 Department of Chemical and Materials Engineering, National Central University, Jhong-Li 32001, Taiwan
2 Department of Chemistry, Tomsk State University, Tomsk, Siberia, Russia

Topical Section: Catalytic Materials

Nano-gold catalyst has been reported to have high activity and selectivity for liquid phase hydrogenation reaction. In this study, gold-containing bimetals were loaded on TiO2. For bimetallic catalysts, gold and different metals were prepared by the deposition-precipitation method, and then used NaBH4 to reduce metal cations. The catalysts were characterized by X-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The catalytic properties of these catalysts were tested by hydrogenation of p-chloronitrobenzene (p-CNB) in a batch reactor at 1.1 MPa H2 pressure, 373 K and 500 rpm. Cu, Ag, Ru, and Pd formed nano-alloy with Au. In addition, Cu–Au, Ag–Au, and Ru–Au alloy had Cu-, Ag-, and Ru-enriched surface, respectively. Instead, Pd–Au alloy had Pd-enriched surface. There are two kinds of alloy effects: (1) geometric effects, i.e., the surface-enriched metal would change the distance of Au–Au atoms that is required for facilitating the hydrogenation of chloronitrobenzene; and (2) electronic effects, which involve charge transfer between the metals. The activity decreased in the following order: PdAu/TiO2 > Au/TiO2 > NiAu/TiO2 > AgAu/TiO2 > RuAu/TiO2 > CuAu/TiO2. Comparing with other metals, adding Pd in Au showed a higher activity. Adding palladium could reduce gold-valence state, and increased active sites for reaction.
  Figure/Table
  Supplementary
  Article Metrics

Keywords nanoalloy gold catalyst; metal cluster; titanium oxide; hydrogenation; chloronitrobenzene

Citation: Ya-Ting Tsu, Yu-Wen Chen. Preparation of gold-containing binary metal clusters by co-deposition-precipitation method and for hydrogenation of chloronitrobenzene. AIMS Materials Science, 2017, 4(3): 738-754. doi: 10.3934/matersci.2017.3.738

References

  • 1. Bond GC, Sermon PA, Webb G, et al. (1973) Hydrogenation over supported gold catalysts. J Chem Soc Chem Commun 444–445.
  • 2. Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev 41: 319–388.    
  • 3. Haruta M, Kobayashi T, Sano H, et al. (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16: 405–408.
  • 4. Bailie JE, Hutching GJ (1999) Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chem Commun 2151–2152.
  • 5. Pawelec B, Cano-Serrano E, Campos-Martin JM, et al. (2004) Deep aromatics hydrogenation in the presence of DBT over Au–Pd/γ-alumina catalysts. Appl Catal A-Gen 275: 127–139.    
  • 6. Boronat M, Illas F, Corma A (2009) Active sites for H2 adsorption and activation in Au/TiO2 and the role of the support. J Phys Chem A 113: 3750–3757.
  • 7. Bus E, Miller JT, van Bokhoven JA (2005) Hydrogen chemisorption on Al2O3-supported gold catalysts. J Phys Chem B 109: 14581–14587.    
  • 8. Caballero C, Valencia J, Barrera M, et al. (2010) Selective hydrogenation of citral over gold nanoparticles on alumina. Powder Technol 203: 412–414.
  • 9. Campo B, Ivanova S, Gigola C, et al. (2008) Crotonaldehyde hydrogenation on supported gold catalysts. Catal Today 133: 661–666.
  • 10. Cárdenas-Lizana F, Gomez-Quero S, Baddeley CJ, et al. (2010) Tunable gas phase hydrogenation of m-dinitrobenzene over alumina supported Au and Au–Ni. Appl Catal A-Gen 387: 155–165.    
  • 11. Cárdenas-Lizana F, Gomez-Quero S, Keane MA (2008) Ultra-selective gas phase catalytic hydrogenation of aromatic nitro compounds over Au/Al2O3. Catal Commun 9: 475–481.    
  • 12. Cárdenas-Lizana F, Gomez-Quero S, Keane MA (2009) Gas phase hydrogenation of m-dinitrobenzene over alumina supported Au and Au–Ni alloy. Catal Lett 127: 25–32.    
  • 13. Cárdenas-Lizana F, Gomez-Quero S, Keane MA (2008) Exclusive production of chloroaniline from chloronitrobenzene over Au/TiO2 and Au/Al2O3. ChemSusChem 1: 215–221.    
  • 14. Cárdenas-Lizana F, Keane MA (2013) The development of gold catalysts for use in hydrogenation reactions. J Mater Sci 48: 543–564.
  • 15. Claus P (2005) Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A-Gen 291: 222–229.    
  • 16. Claus P, Brückner A, Mohr C, et al. (2000) Supported gold nanoparticles from quantum dot to mesoscopic size scale:  effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J Am Chem Soc 122: 11430–11439.    
  • 17. Chambers RP, Boudart M (1966) Selectivity of gold for hydrogenation and dehydrogenation of cyclohexene. J Catal 5: 517–528.    
  • 18. Chen YW, Lee DS (2013) Liquid phase hydrogenation of p-chloronitrobenzene on Au–Pd/TiO2 catalysts: effects of reduction method. Mod Res Catal 2: 25–34.    
  • 19. Choudhary TV, Sivadinarayana C, Datye AK, et al. (2003) Acetylene hydrogenation on Au-based catalysts. Catal Lett 86: 1−8.
  • 20. Corma A, Boronat M, González S, et al. (2007) On the activation of molecular hydrogen by gold: a theoretical approximation to the nature of potential active sites. Chem Commun 3371–3373.
  • 21. Díaz G, Antonio GC, Orlando HC, et al. (2011) Hydrogenation of citral over IrAu/TiO2 catalysts. effect of the preparation method. Top Catal 54: 467–473.
  • 22. Fujitani T, Nakamura I, Akita T, et al. (2009) Hydrogen dissociation by gold clusters. Angew Chem Int Ed 48: 9515–9518.    
  • 23. Gomez S, Torres C, Luis JGF, et al. (2012) Hydrogenation of nitrobenzene on Au/ZrO2 catalysts. J Chil Chem Soc 57: 1194–1198.    
  • 24. Guan Y, Hensen EJM (2009) Cyanide leaching of Au/CeO2: highly active gold clusters for 1,3-butadiene hydrogenation. Phys Chem Chem Phys 11: 9578–9582.
  • 25. Hartfelder U, Kartusch C, Makosch M, et al. (2013) Particle size and support effects in hydrogenation over supported gold catalysts. Catal Sci Technol 3: 454–461.    
  • 26. Hashmi ASK (2007) Gold-catalyzed organic reactions. Chem Rev 107: 3180–3211.    
  • 27. Hugon A, Delannoy L, Louis C (2008) Supported gold catalysts for selective hydrogenation of 1,3-butadiene in the presence of an excess of alkenes. Gold Bull 41: 127–138.    
  • 28. Jia J, Haraki K, Kondo JN, et al. (2000) Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J Phys Chem B 104: 11153–11156.    
  • 29. Milone C, Crisafulli C, Ingoglia R, et al. (2007) A comparative study on the selective hydrogenation of α,β-unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts. Catal Today 122: 341–351.    
  • 30. Milone C, Ingoglia R, Schipilliti L, et al. (2005) Selective hydrogenation of α,β-unsaturated ketone to α,β-unsaturated alcohol on gold-supported iron oxide catalysts: role of the support. J Catal 236: 80–90.    
  • 31. Cárdenas-Lizana F, Gomez-Quero S, Hugon A, et al. (2009) Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au. J Catal 262: 235–243.    
  • 32. Zhang X, Shi H, Xu BQ (2005) Catalysis by gold: isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew Chem Int Ed 44: 7132–7135.    
  • 33. Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37: 2096–2126.    
  • 34. Mohr C, Hofmeister H, Claus P (2003) The influence of real structure of gold catalysts in the partial hydrogenation of acrolein. J Catal 213: 86–94.    
  • 35. Mohr C, Hofmeister H, Radnik J, et al. (2003) Identification of active sites in gold-catalyzed hydrogenation of acrolein. J Am Chem Soc 125: 1905–1911.    
  • 36. Stobinski L, Zommer L, Dus R (1999) Molecular hydrogen interactions with discontinuous and continuous thin gold films. Appl Surf Sci 141: 319–325.    
  • 37. Boronat M, Concepcion P, Corma A (2009) Unravelling the nature of gold surface sites by combining IR spectroscopy and DFT calculations. Implications in catalysis. J Phys Chem C 113: 16772–16784.
  • 38. Nikolaev SA, Smirnov VV (2009) Synergistic and size effects in selective hydrogenation of alkynes on gold nanocomposites. Catal Today 147: S336–S341.    
  • 39. Nikolaev SA, Permyakov NA, Smirnov VV, et al. (2010) Selective hydrogenation of phenylacetylene into styrene on gold nanoparticles. Kinet Catal 51: 288–292.    
  • 40. Guo X, Liu Q, Wang L, et al. (2012) Synthesis, morphology and optical properties of multi-pods Au/FeO(OH) and Au/Fe2O3 nanostructures. Mater Sci Eng B-Adv 177: 321–326.    
  • 41. Radnik J, Mohr C, Claus P (2003) On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys Chem Chem Phys 5: 172–177.    
  • 42. Crook R, Deering J, Fussell SJ, et al. (2010) Enhance reactivity of silver- and gold-catalysted hydrogenations using silver(I) salts. Tetrahedron Lett 51: 5181–5184.    
  • 43. Edwards JK, Solsona BE, Landon P, et al. (2005) Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au–Pd catalysts. J Catal 236: 69–79.    
  • 44. Liao S, Yu Z, Xu Y, et al. (1995) A remarkable synergic effect of polymer-anchored bimetallic palladium-ruthenium catalysts in the selective hydrogenation of p-chloronitrobenzene. J Chem Soc Chem Commun 1155–1156.
  • 45. Hosseini M, Siffert S, Tidahy HL, et al. (2007) Promotional effect of gold added to palladium supported on a new mesoporous TiO2 for total oxidation of volatile organic compounds. Catal Today 122: 391–396.    
  • 46. Nutt MO, Heck KN, Alvarez P, et al. (2006) Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B-Environ 69: 115–125.    
  • 47. Nutt MO, Hughes JB, Wong MS (2005) Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ Sci Technol 39: 1346–1353.    
  • 48. Vasil'kov AY, Nikolaev SA, Smirnov VV, et al. (2007) An XPS study of the synergetic effect of gold and nickel supported on SiO2 in the catalytic isomerization of allylbenzene. Mendeleev Commun 17: 268–270.    
  • 49. Venezia AM, La Parola V, Deganello G, et al. (2003) Synergetic effect of gold in Au/Pd catalysts during hydrodesulfurization reactions of model compounds. J Catal 215: 317–325.    
  • 50. Piccinini M, Edwin NN, Edwards JK, et al. (2010) Effect of reaction conditions on the performance of Au–Pd/TiO2 catalyst for the direct synthesis of hydrogen peroxide. Phys Chem Chem Phys 12: 2488–2492.    
  • 51. Rousset JL, Cadete-Santos-Aires FJ, Sekhar BR, et al. (2000) Comparative X-ray photoemission spectroscopy study of Au, Ni, and AuNi clusters produced by laser vaporization of bulk metals. J Phys Chem B 104: 5430–5435.
  • 52. Yuan G, Louis C, Delannoy L, et al. (2007) Silica- and titania-supported Ni–Au: application in catalytic hydrodechlorination. J Catal 247: 256–268.    
  • 53. Wu Z, Zhao Z, Zhang M (2010) Synthesis by replacement reaction and application of TiO2-supported Au–Ni bimetallic catalyst. ChemCatChem 2: 1606–1614.    
  • 54. Liu YC, Huang CY, Chen YW (2006) Hydrogenation of p-chloronitrobenzene on Ni–B nanometal catalysts. J Nanopart Res 8: 223–230.    
  • 55. Liu YC, Huang CY, Chen YW (2006) Liquid-phase selective hydrogenation of p-chloronitrobenzene on Ni–P–B nanocatalysts. Ind Eng Chem Res 45: 62−69.
  • 56. Wang X, Perret N, Delgado JJ, et al. (2013) Reducible support effects in the gas phase hydrogenation of p-chloronitrobenzene over gold. J Phys Chem C 117: 994–1005.    
  • 57. Yan X, Liu M, Liu H, et al. (2001) Role of boron species in the hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts. J Mol Catal A-Chem 169: 225–233.    
  • 58. Chen YW, Lee DS, Chen HJ (2012) Preferential oxidation of CO in H2 stream on Au/ZnO–TiO2 cataalysts. Int J Hydrogen Energ 37: 15140–15155.    
  • 59. Sandoval A, Aguilar A, Louis C, et al. (2011) Bimetallic Au–Ag/TiO2 catalyst prepared by deposition-precipitation: high activity and stability in CO oxidation. J Catal 281: 40–49.    
  • 60. Sarkany A, Geszti O, Safran G (2008) Preparation of Pd shell–Au core/SiO2 catalyst and catalytic activity for acetylene hydrogenation. Appl Catal A-Gen 350: 157–163.    
  • 61. Sarkany A, Horvath A, Beck A (2002) Hydrogenation of acetylene over low Loaded Pd and Pd–Au/SiO2 catalysts. Appl Catal A-Gen 229: 117–125.    
  • 62. Serna P, Concepción P, Corma A (2009) Design of highly active and chemoselective bimetallic gold–platinum hydrogenation catalysts through kinetic and isotopic studies. J Catal 265: 19–25.    
  • 63. Stakheev AY, Kustov LM (1999) Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl Catal A-Gen 188: 3–35.    
  • 64. Steiner P, Hüfner S (1981) Core level binding energy shifts in Ni on Au and Au on Ni overlayers. Solid State Commun 37: 279–283.
  • 65. Zafeiratos S, Kennou S (2001) Photoelectron spectroscopy study of surface alloying in the Au/Ni (s) 5(0 0 1) × (1 1 1) system. Appl Surf Sci 173: 69–75.    

 

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Yu-Wen Chen, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved