Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Magnetic vortex dynamics in the non-circular potential of a thin elliptic ferromagnetic nanodisk with applied fields

Department of Physics, Kansas State University, Manhattan, KS 66506 USA

Topical Section: Nanomaterials, nanoscience and nanotechnology

Spontaneous vortex motion in thin ferromagnetic nanodisks of elliptical shape is dominated by a natural gyrotropic orbital part, whose resonance frequency $\omega_G=\overline{k}/G$ depends on a force constant and gyrovector charge, both of which change with the disk size and shape and applied in-plane or out-of-plane fields. The system is analyzed via a dynamic Thiele equation and also using numerical simulations of the Landau-Lifshitz-Gilbert (LLG) equations for thin systems, including temperature via stochastic fields in a Langevin equation for the spin dynamics. A vortex is found to move in an elliptical potential with two principal axis force constants $k_x$ and $k_y$, whose ratio determines the eccentricity of the vortex motion, and whose geometric mean $\overline{k}=\sqrt{k_x k_y}$ determines the frequency. The force constants can be estimated from the energy of quasi-static vortex configurations or from an analysis of the gyrotropic orbits. $k_x$ and $k_y$ get modified either by an applied field perpendicular to the plane or by an in-plane applied field that changes the vortex equilibrium location. Notably, an out-of-plane field also changes the vortex gyrovector $G$, which directly influences $\omega_G$. The vortex position and velocity distributions in thermal equilibrium are found to be Boltzmann distributions in appropriate coordinates, characterized by the force constants.
  Article Metrics


1. Schneider M, Hoffmann H, Zweck J (2000) Lorentz microscopy of circular ferromagnetic permalloy nondisks. Appl Phys Lett 77: 2909.    

2. Wysin GM, Figueiredo W (2012) Thermal vortex dynamics in thin circular ferromagnetic nanodisks. Phys Rev B 86: 104421.    

3. Guslienko KY, Han XF, Keavney DJ, et al. (2006) Magnetic vortex core dynamics in cylindrical ferromagnetic dots. Phys Rev Lett 96: 067205.    

4. Buchanan KS, Roy PE, Fradkin FY, et al. (2006) Vortex dynamics in patterned ferromagnetic ellipses. J Appl Phys 99: 08C707.

5. Wysin GM (2015) Vortex dynamics in thin elliptic ferromagnetic nanodisks. Low Temp Phys (Fiz Nizk Temp) 41: 788-800 (41: 1009?023).    

6. Kireev VE, Ivanov BA (2003) Inhomogeneous states in a small magnetic disk with single-ion surface anisotropy. Phys Rev B 68: 104428.    

7. Buchanan KS, Roy PE, Grimsditch M, et al. (2006) Magnetic-field tunability of the vortex translational mode in micron-sized permalloy ellipses: Experiment and micromagnetic modeling. Phys Rev B 74: 064404.    

8. de Loubens G, Riegler A, Pigeau B, et al. (2009) Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk. Phys Rev Lett 102: 177602.    

9. Fried JP, Fangohr H, Kostylev M, et al. (2016) Exchange-mediated, nonlinear, out-of-plane magnetic field dependence of the ferromagnetic vortex gyrotropic mode frequency driven by core deformation. Phys Rev B 94: 224407.    

10. Thiele AA (1974) Applications of the gyrocoupling vector and dissipation dyadic in the dynamics of magnetic domains. J Appl Phys 45: 377.    

11. García-Palacios JL, Lázaro FJ (1998) Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys Rev B 58: 14937.    

12. Wysin GM (2010) Vortex-in-nanodot potentials in thin circular magnetic dots. J Phys-Condens Mat 22: 376002.    

13. Machado TS, Rappoport TG, Sampaio LC (2012) Vortex core magnetization dynamics induced by thermal excitation. Appl Phys Lett 100: 112404.    

Copyright Info: © 2017, G. M. Wysin, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved