Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Novel ZnWO4/RGO nanocomposite as high performance photocatalyst

Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore-575025, Karnataka, India

Topical Section: 2D Materials

In this study, we report the synthesis of nanocomposite material composed of zinc tungstate (ZnWO4) and reduced graphene oxide (RGO) as photocatalyst by a simple microwave irradiation technique. The prepared nanocomposites have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometer (FTIR), photoluminescence spectroscopy (PL) and UV-Visible spectroscopy. The photocatalytic activities of the prepared nanocomposites are evaluated in terms of the efficiencies of photodegradation of methylene blue (MB) dye in aqueous solution under visible light irradiation. The prepared nanocomposites showed excellent photodegradation efficiency compared to the commercial TiO2 under visible light irradiation. The activity of the catalyst towards methyl orange (MO) and rhodamine B (RB) was also good. Further, in view of the low cost, simple preparation method and high catalytic activity of the material, it is expected that the prepared nanocomposite can serve as an environment friendly photocatalyst for treating the large scale industrial waste waters.
  Article Metrics

Keywords photocatalyst; ZnWO4/RGO; photocatalysis; microwave irradiation; methylene blue

Citation: Mohamed Jaffer Sadiq Mohamed, Denthaje Krishna Bhat. Novel ZnWO4/RGO nanocomposite as high performance photocatalyst. AIMS Materials Science, 2017, 4(1): 158-171. doi: 10.3934/matersci.2017.1.158


  • 1. Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ Sci Technol 38: 4905-4909.    
  • 2. Ma J, Song W, Chen C, et al. (2005) Fenton degradation of organic compounds promoted by dyes under visible irradiation. Environ Sci Technol 39: 5810-5815.    
  • 3. Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photoch Photobio A 108: 1-35.    
  • 4. Born P, Robertson D, Smith P, et al. (1981) The preparation and scintillation properties of zinc tungstate single crystals. J Lumin 24: 131-134.
  • 5. Tien HN, Khoa NT, Hahn SH, et al. (2013) One-pot synthesis of a reduced graphene oxide-zinc oxide sphere composite and its use as a visible light photocatalyst. Chem Eng J 229: 126-133.    
  • 6. Huang X, Qi X, Boey F, et al. (2012) Graphene-based composites. Chem Soc Rev 41: 666-686.    
  • 7. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41: 782-796.    
  • 8. Wang W, Shen J, Li N, et al. (2013) Synthesis of novel photocatalytic RGO-ZnWO4 nanocomposites with visible light photoactivity. Mater Lett 106: 284-286.    
  • 9. Sadiq MMJ, Shenoy US, Bhat DK (2016) Novel RGO-ZnWO4-Fe3O4 nanocomposite as high performance visible light photocatalyst. RSC Adv 6: 61821-61829.    
  • 10. Sadiq MMJ, Nesaraj AS (2015) Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. J Nanostruct Chem 5: 45-54.    
  • 11. Sadiq Mohamed MJ, Bhat Denthaje K (2016) Novel RGO-ZnWO4-Fe3O4 nanocomposite as an efficient catalyst for rapid reduction of 4-nitrophenol to 4-aminophenol. Ind Eng Chem Res 55: 7267-7272.    
  • 12. Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80: 1339-1339.    
  • 13. Huang G, Shi R, Zhu Y (2011) Photocatalytic activity and photoelectric performance enhancement for ZnWO4 by fluorine substitution. J Mol Catal A-Chem 348: 100-105.    
  • 14. Rahimi Nasrabadi M, Pourmortazavi SM, Ganjali MR, et al. (2013) Electrosynthesis and characterization of zinc tungstate nanoparticles. J Mol Struct 1047: 31-36.    
  • 15. Raja K, Verma S, Karmakar S, et al. (2011) Synthesis and characterization of magnetite nanocrystals. Cryst Res Technol 46: 497-500.    
  • 16. Huang G, Zhu Y (2007) Synthesis and photocatalytic performance of ZnWO4 catalyst. Mater Sci Eng B 139: 201-208.    
  • 17. Nethravathi C, Nisha T, Ravishankar N, et al. (2009) Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon 47: 2054-2059.    
  • 18. Szabó T, Berkesi O, Dékány I (2005) DRIFT study of deuterium-exchanged graphite oxide. Carbon 43: 3186-3189.    
  • 19. Jiang N, Xiu Z, Xie Z, et al. (2014) Reduced graphene oxide-CdS nanocomposites with enhanced visible-light photoactivity synthesized using ionic-liquid precursors. New J Chem 38: 4312-4320.    
  • 20. Atuchin VV, Galashov EN, Khyzhun OY, et al. (2011) Structural and electronic properties of ZnWO4 (010) cleaved surface. Cryst Growth Des 11: 2479-2484.    
  • 21. Cortés Jácome M, Angeles Chavez C, Lopez Salinas E, et al. (2007) Migration and oxidation of tungsten species at the origin of acidity and catalytic activity on WO3-ZrO2 catalysts. Appl Catal A-Gen 318: 178-189.    
  • 22. Sun L, Zhao X, Jia CJ, et al. (2012) Enhanced visible-light photocatalytic activity of gC3N4-ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies. J Mater Chem 22: 23428-23438.    
  • 23. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi (B) 15: 627-637.    
  • 24. Jiang Y, Wang WN, et al. (2014) Facile Aerosol Synthesis and Characterization of Ternary Crumpled Graphene-TiO2-Magnetite Nanocomposites for Advanced Water Treatment. ACS Appl Mater Inter 6: 11766-11774.
  • 25. Sun M, Fang Y, Wang Y, et al. (2015) Synthesis of Cu2O/graphene/rutile TiO2 nanorod ternary composites with enhanced photocatalytic activity. J Alloy Compd 650: 520-527.    
  • 26. Luo QP, Yu XY, Lei BX, et al. (2012) Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J Phys Chem C 116: 8111-8117.    
  • 27. Williams G, Kamat PV (2009) Graphene-Semiconductor Nanocomposites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide. Langmuir 25: 13869-13873.    
  • 28. Wang L, Ding J, Chai Y, et al. (2015) CeO2 nanorod/gC3N4/N-rGO composite: enhanced visible-light-driven photocatalytic performance and the role of N-rGO as electronic transfer media. Dalton Trans 44: 11223-11234.    
  • 29. Pradhan GK, Padhi DK, Parida K (2013) Fabrication of α-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl Mater Inter 5: 9101-9110.    
  • 30. Lavanya T, Dutta M, Satheesh K (2016) Graphene wrapped porous tubular rutile TiO2 nanofibers with superior interfacial contact for highly efficient photocatalytic performance for water treatment. Sep Purif Technol 168: 284-293.    
  • 31. Lavanya T, Satheesh K, Dutta M, et al. (2014) Superior photocatalytic performance of reduced graphene oxide wrapped electrospun anatase mesoporous TiO2 nanofibers. J Alloy Compd 615: 643-650.    


This article has been cited by

  • 1. Mohamed Jaffer Sadiq Mohamed, Denthaje Krishna Bhat, A facile microwave approach to synthesize RGO-BaWO4 composites for high performance visible light induced photocatalytic degradation of dyes, AIMS Materials Science, 2017, 4, 2, 487, 10.3934/matersci.2017.2.487
  • 2. M. Mohamed Jaffer Sadiq, U. Sandhya Shenoy, D. Krishna Bhat, Enhanced photocatalytic performance of N-doped RGO-FeWO 4 /Fe 3 O 4 ternary nanocomposite in environmental applications, Materials Today Chemistry, 2017, 4, 133, 10.1016/j.mtchem.2017.04.003
  • 3. M. Mohamed Jaffer Sadiq, U. Sandhya Shenoy, D. Krishna Bhat, NiWO 4 -ZnO-NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4-nitro phenol, Journal of Physics and Chemistry of Solids, 2017, 10.1016/j.jpcs.2017.05.023
  • 4. M. Mohamed Jaffer Sadiq, Sankararao Mutyala, Jayaraman Mathiyarasu, D. Krishna Bhat, RGO/ZnWO 4 /Fe 3 O 4 nanocomposite as an efficient electrocatalyst for oxygen reduction reaction, Journal of Electroanalytical Chemistry, 2017, 799, 102, 10.1016/j.jelechem.2017.05.051
  • 5. R. F. Gonçalves, E. Longo, A. P. A. Marques, M. D. P. Silva, L. S. Cavalcante, I. C. Nogueira, I. M. Pinatti, P. F. S. Pereira, M. J. Godinho, Structural investigation and photoluminescent properties of ZnWO4:Dy3+ nanocrystals, Journal of Materials Science: Materials in Electronics, 2017, 10.1007/s10854-017-7434-0
  • 6. Aiguo Wang, Danielle Austin, Hui Qian, Hongbo Zeng, Hua Song, Catalytic Valorization of Furfural Under Methane Environment, ACS Sustainable Chemistry & Engineering, 2018, 10.1021/acssuschemeng.8b01257
  • 7. Wen Yan, Xiangchun Liu, Shan Hou, Xiao Wang, Study on micro-nanocrystalline structure control and performance of ZnWO4 photocatalysts, Catalysis Science & Technology, 2019, 10.1039/C8CY02343C
  • 8. K. Brijesh, H. S. Nagaraja, Lower Band Gap Sb/ZnWO4/r-GO Nanocomposite Based Supercapacitor Electrodes, Journal of Electronic Materials, 2019, 10.1007/s11664-019-07185-8
  • 9. Ravindranadh Koutavarapu, Bathula Babu, Ch. Venkata Reddy, Kisoo Yoo, Migyung Cho, Jaesool Shim, A novel one-pot approach of ZnWO4 nanorods decorated onto g-C3N4 nanosheets: 1D/2D heterojunction for enhanced solar-light-driven photocatalytic activity, Journal of Materials Science, 2019, 10.1007/s10853-019-04022-5
  • 10. M. Mohamed Jaffer Sadiq, D. Krishna Bhat, Novel NiWO4-ZnO-NRGO Ternary Nanocomposites with Enhanced Photocatalytic Activity, Materials Today: Proceedings, 2018, 5, 10, 22412, 10.1016/j.matpr.2018.06.610
  • 11. K. Brijesh, H. S. Nagaraja, ZnWO4/r-GO nanocomposite as high capacity anode for lithium-ion battery, Ionics, 2020, 10.1007/s11581-020-03480-1
  • 12. M. Jagadeesh Babu, Sathish Mohan Botsa, S. Jhansi Rani, B. Venkateswararao, R. Muralikrishna, Enhanced photocatalytic degradation of cationic dyes under visible light irradiation by CuWO4-RGO nanocomposite, Advanced Composites and Hybrid Materials, 2020, 10.1007/s42114-020-00149-1
  • 13. Brijesh K, Vinayraj S, P.C. Dhanush, Bindu K, H.S. Nagaraja, ZnWO4/SnO2@r-GO nanocomposite as an anode material for high capacity Lithium ion Battery,, Electrochimica Acta, 2020, 136676, 10.1016/j.electacta.2020.136676

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Denthaje Krishna Bhat, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved