Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Rupture of graphene sheets with randomly distributed defects

Department of Materials Science and Engineering, WW8 – Materials Simulation, Friedrich- Alexander University Erlangen-Nürnberg, Dr.-Mack-Strasse 77, 90762 Fürth, Germany

Special Issues: Interaction of Multiple Cracks in Materials -Volume 1

We use atomistic simulation (molecular mechanics and molecular dynamics) to investigate failure of graphene sheets containing randomly distributed vacancies. We investigate the dependency of the failure stress on defect concentration and sheet size and show that our findings are consistent with the Duxbury-Leath-Beale (DLB) theory of mechanical or electric breakdown in random media. The corresponding distribution of failure stresses falls into the Gumbel, rather than the Weibull class of extremal statistics. By comparing molecular mechanics and zero-temperature molecular dynamics simulations we establish the role of kinetic energy in crack propagation and its impact on crack patterns emerging before sheet rupture.
  Article Metrics

Keywords graphene; fracture; microcracks; disordered media; extremal statistics

Citation: Samaneh Nasiri, Michael Zaiser. Rupture of graphene sheets with randomly distributed defects. AIMS Materials Science, 2016, 3(4): 1340-1349. doi: 10.3934/matersci.2016.4.1340


  • 1. Wang S, Ang PK,Wang Z, et al. (2009) High mobility, printable, and solution-processed graphene electronics. Nano Lett 10: 92–98.
  • 2. Ajayan PM, Tour JM (2007) Materials science: nanotube composites. Nature 447: 1066–1068.    
  • 3. Lee C,Wei X, Kysar JW, et al. (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321: 385–388.    
  • 4. Zhao Q, Nardelli MB, Bernholc J (2002) Ultimate strength of carbon nanotubes: A theoretical study. Phys Rev B 65: 144105.    
  • 5. Barber A, Kaplan-Ashiri I, Cohen SR, et al. (2002) Stochastic strength of nanotubes: An appraisal of available data. Compos Sci Technol 65: 2380–2384.
  • 6. Mielke SL, Troya DZ, Zhang S, et al. (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390: 413–420.    
  • 7. Sammalkorpi M, Krasheninnikov A, Kuronen A, et al. (2004) Mechanical properties of carbon nanotubes with vacancies and related defects. Phys Rev B 70: 245416.    
  • 8. Khare R, Mielke SL, Paci JT, et al. (2007) Coupled quantum mechanical/ molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75: 075412.    
  • 9. Bhattacharya B, Lu Q (2006) Ultimate strength of carbon nanotubes: A theoretical study. J Stat Mech 2006: P06021.
  • 10. Yang M, Koutsos V, Zaiser M (2007) Size e ect in the tensile fracture of single-walled carbon nanotubes with defects. Nanotechnology 18: 155708.
  • 11. Wang MC, Yan C, Ma L, et al. (2012) E ect of defects on fracture strength of graphene sheets. Comp Mater Sci 54: 236–239.    
  • 12. Xu L, Wei N, Zheng Y (2013) Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture. Nanotechnology 24: 505703.    
  • 13. Sellerio AL, Taloni A, Zapperi S (2015) Fracture size e ects in nanoscale materials: the case of graphene. Phys Rev Appl 4: 024011.    
  • 14. Pastewka L, Pou P, Perez R, et al. (2008) Describing bond-breaking processes by reactive potentials: Importance of an environment-dependent interaction range. Phys Rev B 78: 161402
  • 15. Duxbury PM, Leath PL, Beale PD (1987) Breakdown properties of quenched random systems: the random-fuse network. Phys Rev B 36: 367–380.    
  • 16. Manzato C, Shekhawat A, Nukala PK, et al. (2012) Fracture strength of disordered media: Universality,interactions, and tail asymptotics. Phys Rev Lett 108: 065504.    
  • 17. Duxbury PM, Kim SG, Leath PL (1994) Size e ect and statistics of fracture in random materials. Mater Sci Eng A 176: 25–31.    


This article has been cited by

  • 1. Mobin Shakeri, Effect of randomly distributed asymmetric stone-wales defect on electronic and transport properties of armchair graphene nanoribbon, Superlattices and Microstructures, 2019, 128, 116, 10.1016/j.spmi.2019.01.019
  • 2. Samaneh Nasiri, Kai Wang, Mingjun Yang, Qianqian Li, Michael Zaiser, Nickel coated carbon nanotubes in aluminum matrix composites: a multiscale simulation study, The European Physical Journal B, 2019, 92, 8, 10.1140/epjb/e2019-100243-6
  • 3. Konstantin P. Katin, Konstantin S. Krylov, Mikhail M. Maslov, Vadim D. Mur, Tuning the supercritical effective charge in gapless graphene via Fermi velocity modifying through the mechanical stretching, Diamond and Related Materials, 2019, 100, 107566, 10.1016/j.diamond.2019.107566
  • 4. Mohammed Javeed Akhter, Wacław Kuś, Adam Mrozek, Tadeusz Burczyński, Mechanical Properties of Monolayer MoS2 with Randomly Distributed Defects, Materials, 2020, 13, 6, 1307, 10.3390/ma13061307
  • 5. Samaneh Nasiri, Christian Greff, Kai Wang, Mingjun Yang, Qianqian Li, Paolo Moretti, Michael Zaiser, Multilayer Structures of Graphene and Pt Nanoparticles: A Multiscale Computational Study, Advanced Engineering Materials, 2020, 2000207, 10.1002/adem.202000207

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Michael Zaiser, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved