Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Influence of macro-topography on mechanical performance of 0.5 wt% nanoclay/multi-layer graphene-epoxy nanocomposites

Northumbria University, Faculty of Engineering and Environment, Department of Mechanical and Construction Engineering, Newcastle upon Tyne NE1 8ST, United Kingdom

Topical Section: 2D Materials

Influence of topography on the variation in mechanical performance of 0.5 wt% multi-layer graphene (MLG)/nanoclay-epoxy nanocomposites has been studied. Three different systems were produced: 0.5 wt% MLG-EP, 0.5 wt% nanoclay-EP, and 0.25 wt% MLG-0.25 wt% nanoclay-EP. The influence of synergistic effect on mechanical performance in case of hybrid nanocomposites is also studied. Various topography parameters studied include maximum roughness height (Rz or Rmax),root mean square value (Rq),roughness average (Ra), and surface waviness (Wa).The Rz of as-cast 0.5 wt% MLG, nanoclay, and 0.25 wt% MLG-0.25 wt% nanoclay-EP nanocomposites were 41.43 μm, 43.54 μm, and 40.28 μm, respectively. The 1200P abrasive paper and the velvet cloth decreased the Rzvalue of samples compared with as-cast samples. In contrary, the 60P and 320P abrasive papers increased the Rz values. Dueto the removal of material from the samples by erosion, the dimensions of samples decreased. The weight loss due to erosion was commensurate with the coarseness of abrasive papers. It was observed that MLG is more influential in enhancing the mechanical performance of epoxy nanocomposites than nanoclay. In addition, it was observed that mechanical performance of hybrid nanocomposites did not show a marked difference suggesting that synergistic effects are not strong enough in MLG and nanoclay.
  Figure/Table
  Supplementary
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved