Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts

College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States

Topical Section: Advanced composites

In order to gain a better understanding of the reactions and strengthening behavior in cast aluminum alloy/silica composites synthesized by stir mixing, experiments were conducted to incorporate low cost foundry silica sand into aluminum composites with the use of Mg as a wetting agent. SEM and XRD results show the conversion of SiO2 to MgAl2O4 and some Al2O3 with an accompanying increase in matrix Si content. A three-stage reaction mechanism proposed to account for these changes indicates that properties can be controlled by controlling the base Alloy/SiO2/Mg chemistry and reaction times. Experimental data on changes of composite density with increasing reaction time and SiO2 content support the three-stage reaction model. The change in mechanical properties with composition and time is also described.
  Article Metrics

Keywords silica sand; magnesium; aluminum matrix composite; microstructure; reactive wetting

Citation: Afsaneh Dorri Moghadam, J.B. Ferguson, Benjamin F. Schultz, Pradeep K. Rohatgi. In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts. AIMS Materials Science, 2016, 3(3): 954-964. doi: 10.3934/matersci.2016.3.954


  • 1. Moghadam AD, Schultz BF, Ferguson JB, et al. (2014) Functional metal matrix composites: self-lubricating, self-healing, and nanocomposites-an outlook. JOM 66: 872–881.
  • 2. Sato A, Mehrabian R (1976) Aluminum matrix composites: fabrication and properties. Metall Trans B 7: 443–451.
  • 3. Amirkhanlou S, Niroumand B (2010) Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods. Trans Nonferrous Met Soc China 20: s788–s793.    
  • 4. Das S, Das K (2007) Abrasive wear of zircon sand and alumina reinforced Al–4.5 wt% Cu alloy matrix composites–A comparative study. Compos Sci Technol 67: 746–751.
  • 5. Rohatgi PK, Schultz BF, Daoud A, et al. (2010) Tribological performance of A206 aluminum alloy containing silica sand particles. Tribol Int 43: 455–466.
  • 6. Dorri Moghadam A, Ferguson JB, Schultz BF, Lopez HF, Rohatgi PK (2016) Direct synthesis of nano structured in-situ hybrid aluminum matrix nanocomposite.Ind Eng Chem Res 55: 6345–6353.
  • 7. Zuhailawati H, Samayamutthirian P, Haizu CM (2007) Fabrication of low cost aluminium matrix composite reinforced with silica sand. J Phys Sci 18: 47–55.
  • 8. Yoshikawa N, Kikuchi A, Taniguchi S (2002) Anomalous temperature dependence of the growth rate of the reaction layer between silica and molten aluminum. J Am Ceram Soc 85: 1827–1834.
  • 9. Hemanth J (2009) Quartz (SiO 2p) reinforced chilled metal matrix composite (CMMC) for automotive applications. Mater Des 30: 323–329.    
  • 10. Sulaiman S, Sayuti M, Samin R (2008) Mechanical properties of the as-cast quartz particulate reinforced LM6 alloy matrix composites. J Mater Process Technol 201: 731–735.    
  • 11. Rohatgi PK, Pai BC, Panda SC (1979) Preparation of Cast Aluminum-Silica Particulate Composites. J Mater Sci 14: 2277–2283.
  • 12. Rohatgi PK, Asthana R, Das S (1986) Solidification, structures, and properties of cast metal-ceramic particle composites. Int Mater Rev 31: 115–139.    
  • 13. Gupta AK, Dan TK, Rohatgi PK (1986) Aluminum Alloy-silica Sand Composites: Preparation and Properties. J Mater Sci 21: 3413–3419.    
  • 14. Moghadam AD, Omrani E, Menezes P L, Rohatgi PK (2016). Effect of in-situ processing parameters on the mechanical and tribological properties of self-lubricating hybrid aluminum nanocomposites.Tribology Letters62: 1-10.
  • 15. Pai BC, Ramani G, Pillai RM, et al. (1995) Role of Magnesium in Cast Aluminum Alloy Matrix Composites. J Mater Sci 30: 1903–1911.
  • 16. McLeod AD, Gabryel CM (1992) Kinetics of the Growth of Spinel. MgAl2O4, on Alumina Particulate in Aluminum Alloys Containing Magnesium. Metall Trans A 23A: 1279–1283.
  • 17. Mogilevsky R, Bryan SR, Wolbach WS, et al. (1995) Reactions at the Matrix/Reinforcement Interface in Aluminum Alloy Matrix Composites. Mater Sci Eng A 191: 209–222.    
  • 18. Hanabe MR, Aswath PB (1996) Al2O3/Al particle-reinforced aluminum matrix composite by displacement reaction. J Mater Res 11: 1562–1569.    


This article has been cited by

  • 1. Cao Fenghong, Chen Chang, Wang Zhenyu, T. Muthuramalingam, G. Anbuchezhiyan, Effects of Silicon Carbide and Tungsten Carbide in Aluminium Metal Matrix Composites, Silicon, 2019, 10.1007/s12633-018-0051-6

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Afsaneh Dorri Moghadam, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved