-
AIMS Materials Science, 2016, 3(3): 862-880. doi: 10.3934/matersci.2016.3.862.
Research article Topical Section
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Advantages of using CFRP cables in orthogonally loaded cable structures
Fachgebiet Entwerfen und Konstruieren – Massivbau, Institut für Bauingenieurwesen, Technische Universität Berlin, 13355 Berlin, Germany
Received: , Accepted: , Published:
Topical Section: Advanced composites
Keywords: CFRP cable; orthogonally loaded cable structure; cable net facade; spoked wheel cable roof; advantage
Citation: Yue Liu, Bernd Zwingmann, Mike Schlaich. Advantages of using CFRP cables in orthogonally loaded cable structures. AIMS Materials Science, 2016, 3(3): 862-880. doi: 10.3934/matersci.2016.3.862
References:
- 1. Bhargava AK (2004) Engineering Materials: Polymers, Ceramics and Composites, New Delhi: Prentice-Hall of India Pvt. Ltd.
- 2. Morgan P (2005) Carbon fibers and their composites, Boca Raton: CRC Press.
- 3. Askeland D, Fulay P, Wright W (2010) The Science and Engineering of Materials, Boston: Cengage Learning.
- 4. CEN (European Committee for Standardization) (2005) EN 1993-1-11: Design of Steel Structures–Part 1–11: Design of structures with tension components, In: Eurocode 3, Brussels.
-
5. Schlaich M, Liu Y, Zwingmann B (2015) Carbon Fibre Reinforced Polymer for Orthogonally Loaded Cable Net Structures. Struct Eng Int 25: 34–42.
- 6. Quilter A (2001) Composites in aerospace applications. IHS White Paper 444: 1–5.
-
7. Meier U (1992) Carbon Fiber Reinforced Polymer: Modern Materials in Bridge Engineering. Struct Eng Int 2: 7–12.
- 8. Andrä H, Maier M, Poorbiazar M (2004) Carbon fiber composites for a new generation of tendons, In: Proc., 1st Conf. on Application of FRP Composites in Construction and Rehabilitation of Structures, Tehran.
- 9. Winistoerfer AU, Mottram T (2001) The future of pin-loaded straps in civil engineering applications, In: Proc., 2001 US-Canada-Europe Workshop on Bridge Engineering, Zurich.
- 10. Taerwe L (1995) Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium, Boca Raton: CRC Press.
- 11. Santoh N (1993) CFCC (Carbon FRP Cable). Developments in Civil Engineering 42: 223–223.
- 12. Schober K, Rautenstrauch K (2005) Experimental investigation on flexural strengthening of timber structures with CFRP, In: Proc., 2005 International Symposium on Bond Behavior of FRP in Structures, Hong Kong.
- 13. Winistoefer AU (1999) Ph.D. thesis: development of non-laminated advanced composite straps for civil engineering applications, Warwick: University of Warwick.
-
14. Grace NF, Enomoto T, Abdel-Sayed G, et al. (2003) Experimental study and analysis of a full-scale CFRP/CFCC double-tee bridge beam. Pci J 48: 120–139.
- 15. Grace NF, Enomoto T, Yagi K (2002) Behavior of CFCC and CFRP leadline prestressing systems in bridge construction. Pci J 47: 90–103.
- 16. Pfeifer (2011) Pfeifer Tension Members, Memmingen: Pfeifer Seil- und Hebetechik GmbH.
-
17. Schlaich M, Zwingmann B, Liu Y, et al. (2012) Zugelemente aus CFK und ihre Verankerungen. Bautechnik 89: 841–849.
- 18. Meier U (2012) Carbon Fiber Reinforced Polymer Cables: Why? Why Not? What If? Arabian J Sci Eng 37: 399–411.
- 19. Meier U (1987) Proposal for a carbon fiber reinforced composite bridge across the Strait of Gibraltar at its narrowest site. P I Mech Eng B-J Eng 201: 73–78.
- 20. Karbhari VM (1998) Use of Composite Materials in Civil Infrastructure in Japan. Baltimore: International Technology Research Institute.
- 21. Liu Y (2015) Ph.D. thesis: Carbon Fiber Reinforced Polymer (CFRP) Cables for Orthogonally Loaded Cable Structures: Advantages and Feasibility, Berlin: Technische Universität Berlin.
-
22. Serdjuks D, Rocens K, Pakrastinsh L (2000) Utilization of composite materials in saddle-shaped cable roofs. Mech Compos Mater 36: 385–388.
-
23. Feng P, Ye LP, Teng JG (2007) Large-span woven web structure made of fiber-reinforced polymer. J Compos Constr 11: 110–119.
-
24. Palkowski S (2003) Ausgewählte Probleme bei statischen Berechnungen von Seilkonstruktionen. Stahlbau 72: 708–714.
- 25. Palkowski S (2013) Statik der Seilkonstruktionen: Theorie und Zahlenbeispiele, Berlin: Springer-Verlag (in German).
- 26. Noesgen J (1974) Vorgespannte Seilnetztragwerke - zum Tragverhalten des quadratischen Netzes mit starrem Rand, Cologne: Werner-Verlag.
- 27. Belytschko T, Liu WK, Moran B, et al. (2013) Nonlinear finite elements for continua and structures, Hoboken: John Wiley & Sons.
- 28. De Borst R, Crisfield MA, Remmers JJ, et al. (2012) Nonlinear finite element analysis of solids and structures, Hoboken: John Wiley & Sons.
- 29. SOFiSTiK (2014) SOFiSTiK user’s manual, version 2014, Oberschleißheim: SOFiSTiK AG.
- 30. CEN (European Committee for Standardization) (2005) EN 1991-1-4: Actions on structures–Part 1–4: General actions. In: Eurocode 1, Brussels.
- 31. Goris A, Schneider K (2006) Bautabellen für Ingenieure. Cologne: Werner-Verlag (in German).
- 32. CEN (European Committee for Standardization) (2002) EN 1990: Basis of structural design, In: Eurocode 0, Brussels.
- 33. CEN (European Committee for Standardization) (2005) EN 1993-1-1: Design of Steel Structures–Part 1-1: General rules and rules for buildings, In: Eurocode 3, Brussels.
This article has been cited by:
- 1. Vilius Karieta, THE ANALYSIS OF RATIONAL COMPONENT PARAMETERS FOR STRESS RIBBON THROUGH STEEL ARCH FOOTBRIDGES, Engineering Structures and Technologies, 2018, 10, 2, 72, 10.3846/est.2018.6480
- 2. IfeOlorun Olofin, Ronggui Liu, Suspen-Dome System: A Fascinating Space Structure, The Open Civil Engineering Journal, 2017, 11, 1, 131, 10.2174/1874149501711010131
Reader Comments
Copyright Info: 2016, Yue Liu, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *