Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Enhanced thermal conductance of polymer composites through embeddingaligned carbon nanofibers

1 Department of Mechanical and Aerospace Engineering, Utah State University, Old Main Hill, Logan, Utah 84322, USA
2 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA

Topical Section: Thin films, surfaces and interfaces

The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers.
  Article Metrics

Keywords thermal interface material; thermal conductance; composite; carbon nanofiber; polymer

Citation: DavidWood, Dale K. Hensley, Nicholas Roberts. Enhanced thermal conductance of polymer composites through embeddingaligned carbon nanofibers. AIMS Materials Science, 2016, 3(3): 851-861. doi: 10.3934/matersci.2016.3.851


  • 1.Downing R, Kojasoy G (2002) Single and two-phase pressure drop characteristics in miniature helical channels. Exp Therm Fluid Sci 26: 535–546.    
  • 2.Jagannadham K (2012) Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metall Mater Trans B 43: 316–324.
  • 3.Wejrzanowski T, Grybczuk M, Chmielewski M, et al. (2016) Thermal conductivity of metal-graphene composites. Mater Des 99: 163–173.
  • 4.Wejrzanowski T, Grybczuk M, Chmielewski M, et al. (2015) Heat transfer through metal-graphene interfaces. AIP Adv 5: 077142.    
  • 5.Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci 36: 914–944.    
  • 6.Kuncova-Kallio J, Kallio PJ (2006) PDMS and its suitability for analytical microfluidic devices. Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE 2486–2489.
  • 7.Jothimuthu P, Carroll A, Bhagat AAS (2009) Photodefinable PDMS thin films for microfabrication applications. J Micromech Microeng 19: 045024.
  • 8.Yabuta T, Bescher EP, Mackenzie JD, et al. (2003) Synthesis of PDMS-based porous materials for biomedical applications. J Sol Gel Sci Technol 26: 1219–1222.    
  • 9.Fujii T (2001) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61: 907–914.
  • 10.Visser SA, Hergenrother RW, Cooper SL (1996) Polymers. Biomat Sci 59.
  • 11.Saunders TS, Fry JS, Neuraxis, LLC, assignee. Methods and devices for cooling spinal tissue. United States patent US 8,523,930. 2013 Sep. 3.
  • 12.Sullivan J; Neuraxis, LLC, assignee. Tissue cooling clamps and related methods. United States patent US 8,721,642. 2014 May 4.
  • 13.Lee KL, Li Y, Guzek BJ, et al. (2015) Compact heat rejection system utilizing Integral Planar Variable Conductance Heat Pipe Radiator for space application. Gravitational Space Res 3.30–41.
  • 14.Prasher R, Chiu CP (2009) Materials for Advanced Packaging. Boston: Springer US. Thermal Interface Materials, 437–458.
  • 15.Thompson DR, Cola BA (2013) A stepped-bar apparatus for thermal resistance measurements. J Electronic Packaging 135.
  • 16.Uma S, McConnell AD, Asheghi M, et al. (2001) Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers. Int J Thermophys 22: 605–616.    
  • 17.Zhang Y, Tadigadapa S (2005) Thermal characterization of liquids and polymer films using a microcalorimeter. Appl Phys Lett 86.
  • 18.Kurabayashi K, Asheghi M, Touzelbaev M, et al. (1999) Measurement of the thermal conductivity anisotropy in polyimide films. IJT 8: 180–191.
  • 19.Ju YS, Kurabayashi K, Goodson KE (1999) Thermal characterization of aisotropic thin dielectric films using harmonic joule heating. Thin Solid Films 339: 160–164.    
  • 20.Choy CL, Yang GW, Wong YW (1997) Thermal diffusivity of polymer films by pulsed photothermal radiometry. J Polym Sci Pol Phys 35: 1621–1631.
  • 21.Choy CL, Yang GW, Wong YW, et al. (1999) Elastic modulus and thermal conductivity of ultradrawn polyethylene. J Polym Sci Pol Phys 37: 3359–3367.
  • 22.Eiermann K, Hellwege KH (1962) Thermal conductivity of high polymers from -180 to 90 C. J Polym Sci 57: 99–106.    
  • 23.Sabate N,Santander J, Gracia I, et al. (2005) Characterization of thermal conductivity in thin film multilayered membranes. Thin Solid Films 484: 328–333.    
  • 24.Chu DC, Touzelbaev M, Goodson KE, et al. (2001) Thermal conductivity measurements of thin-film resist. J Vac Sci Technol 19: 2874–2877.    
  • 25.Watabe K, Polynkin P, Mansuripur M (2005) Optical pump-and-probe test system for thermal characterization of thin metal and phase-change films. Appl Optics 44: 3167–3173.    
  • 26.Langer G, Hartmann J, Reichling M (1997) Thermal conductivity of thin metallic films measured by photothermal profile analysis. Rev Sci Instrum 68: 1510–1513.    
  • 27.Rao VV, Bapurao K, Nagaraju J, et al. (2004) Instrumentation to measure thermal contact resistance. Meas Sci Technol 15: 275–278.
  • 28.Savija I, Culham JR, Yovanovich MM, et al. (2003) Review of thermal conductance models for joints incorporating enhancement materials. J Thermophys Heat Tr 17:43–52.    
  • 29.Kempers R, Kolodner P, Lyons A, et al. (2009) A high-precision apparatus for the characterization of thermal interface materials. Rev Sci Instrum 80.
  • 30.Ralphs M, Smith B, Roberts N (2016) Technique for direct measurement of thermal conductivity of elastomers and a detailed uncertainty analysis.[Submitted]."


Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Nicholas Roberts, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved