Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Oxygen permeation through perovskitic membranes: The influence of steam in the sweep on the permeation performance

Forschungszentrum Jülich, Institute of Energy and Climate Research – IEK-2, 52425 Jülich, Germany

Topical Section: Thin films, surfaces and interfaces

Experimental approaches are employed for the understanding of oxygen permeation through membranes. For the experiments, different oxygen partial pressures are applied to both sides of a BSCF5582 membrane, using synthetic air as feed and vacuum or steam/argon as sweep gas. Beside the partial pressure gradient, the permeation rate depends on the temperature and the membrane thickness. Sufficient permeation rates can be achieved by sweeping the membrane with water vapor (steam) instead of a noble gas, which is optimized by ascending water content in the sweep gas. The influence of the steam content on the permeation performance as well as microstructural changes are demonstrated.
  Article Metrics


1. Czyperek M, Zapp P, Bouwmeester H, et al. (2010) Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN. J Membr Sci 359: 149–159.    

2. Smart S, Liu S, Serra J, et al. (2014) Perovskite membrane reactors: fundamentals and applications for oxygen production, syngas production and hydrogen processing. In: Gugliuzza A, Basile A, Membranes for Clean and Renewable Power Applications, 1 Eds., Cambridge, UK:Woodhead Publishing, 182–217.

3. Benson SJ, Waller D, Kilner JA (1999) Degradation of La0:6Sr0:4Fe0:8O3-δ in carbon dioxide and water atmospheres. J Electrochem Soc 146: 1305–1309.    

4. Yi J, Feng S, Zuo Y, et al. (2005) Oxygen Permeability and Stability of Sr0:95Co0:8Fe0:2O3-δ in a CO2- and H2O-Containing Atmosphere. Chem Mater 17: 5856–5861.    

5. Yan A, Cheng M, Dong Y, et al. (2006) Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3 based cathode IT-SOFC: I. The effect of CO2 on the cell performance. Appl Catal B 66: 64–71.

6. Arnold M, Wang H, Feldhoff A (2007) Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0:5Sr0:5)(Co0:8Fe0:2)O3-δ membranes. J Membr Sci 293: 44–52.    

7. Waindich A, M?bius A, Müller M (2009) Corrosion of Ba1xSrxCo1yFeyO3-δ and La0:3Ba0:7Co0:2Fe0:2O3-δ materials for oxygen separating membranes under Oxycoal conditions. J Membr Sci 337: 182–187.    

8. Engels S, Markus T, Modigell M, et al. (2011) Oxygen permeation and stability investigations on MIEC membrane materials under operating conditions for power plant processes. J Membr Sci 370: 58–69.    

9. Song CL, Yi JX (2015) Influence of CO2 on Oxygen Surface Exchange Kinetics of Mixed-Conducting Ba0:5Sr0:5Co0:8Fe0:2O3-δ Oxide. Chinese J Chem Phys 28: 203–205.    

10. Wang H, K?lsch P, Schiestel T, et al. (2006) Production of high-purity oxygen by perovskite hollow fiber membranes swept with steam. J Membr Sci 284: 5–8.    

11. Leo A, Liu S, Diniz da Costa JC (2011) Production of pure oxygen from BSCF hollow fiber membranes using steam sweep. Sep Purif Technol 78: 220–227.    

12. Wang R, Meng B, Meng X, et al. (2015) Highly stable La0:6Sr0:4Co0:2Fe0:2O3-δ hollow fibre membrane for air separation swept by steam or steam mixture. J Membr Sci 479: 232–239.    

13. Wang Z, Kathiraser Y, Ang ML, et al. (2015) High Purity Oxygen Production via BBCN Perovskite Hollow Fiber Membrane Swept by Steam. Ind Eng Chem Res 54: 6371–6377.    

14. Teraoka Y, Zhang H, Furukawa S, et al. (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 14: 1743–1746.    

15. Baumann S, Serra J, Lobera M, et al. (2011) Ultrahigh oxygen permeation flux through supported Ba0:5Sr0:5Co0:8Fe0:2O3-δ membranes. J Membr Sci 377: 198–205.    

16. Mogensen M, Sammes N, Tompsett G (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129: 63–94.    

17. Ten Elshof J, Bouwmeester H, Verweij H (1995) Oxygen transport through La1xSrxFeO3 membranes. I. Permeation in air/He gradients. Solid State Ionics 81: 97–109.    

18. Sunarso J, Baumann S, Serra J, et al. (2008) Mixed ionicelectronic conducting (MIEC) ceramicbased membranes for oxygen separation. J Membr Sci 320: 13–41.    

19. Shao Z, Yang W, Cong Y, et al. (2000) Investigation of the permeation behavior and stability of a Ba0:5Sr0:5Co0:8Fe0:2O3-δ oxygen membrane. J Membr Sci 172: 177–188.    

20. Serra J, Garcia-Fayos J, Baumann S, et al. (2013) Oxygen permeation through tape-cast asymmetric all-La0:6Sr0:4Co0:2Fe0:2O3-δ membranes. J Membr Sci 447: 297–305.    

21. Goldschmidt, V (1926) Die Gesetze der Krystallochemie. Die Naturwissenschaften 21: 477–485.

22. Bhalla, A, Ruyan G, and Rustum R (2000) The perovskite structure - a review of its role in ceramic science and technology. Mater Res Innovations 4: 3–26.    

23. Bouwmeester H, Burggraaf A (1996) Chapter 10 – Dense ceramic membranes for oxygen separation. In: Burggraaf, A. J. and Cot, L. , Membrane Science and Technology Series, 4, Amsterdam, NL: Elsevier, 435–528.

24. Huggett L, Piper L (1966) Materials technology in steam reforming processes : proceedings (ed. C. Edeleanu). Materials Technology Symposium Proceedings(1964 : Billingham Eng.) Oxford ; New York : Symposium Publications Division, Pergamon Press, 337.

Copyright Info: © 2016, Florian Thaler, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved