Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Cathodoluminescence of N-doped SnO2 nanowires and microcrystals

Center for Nanoscience and Nanotechnology, National Autonomous University of Mexico, Ensenada, 22800-Baja California, Mexico

Special Issues: Nanomaterials for energy and environmental applications

We present a cathodoluminescence (CL) study of the point defects in N-doped SnO2 nanowires and microcrystals synthesized by thermal evaporation at different growth temperatures and N concentrations. SnO2:N nanowires were grown at temperatures higher than 1150 °C with N concentrations below of about 3 at.%, while irregular microcrystals were obtained at lower temperatures increasing their N concentration gradually with the growth temperature. EELS and XPS measurements confirmed that N atoms were incorporated into the SnO2 lattice as substitutional impurities (NO). TEM and EDS measurements revealed that the nanowires grew along the [001] direction by a self-catalyzed growth mechanism. CL measurements showed that the nanowires and microcrystals generated a broad emission composed by three components centered at about 2.05, 2.47 and 2.75 eV. CL spectra obtained at 300 and 100 K showed that the component of 2.05 eV decreased in intensity proportionally to the nitrogen content of samples. We attribute this effect to a decrease of oxygen vacancies in the SnO2 nanowires and microcrystals, generated by the incorporation of nitrogen in their lattice.
  Article Metrics

Keywords SnO2; point defects; cathodoluminescence

Citation: David Montalvo, Manuel Herrera. Cathodoluminescence of N-doped SnO2 nanowires and microcrystals. AIMS Materials Science, 2016, 3(2): 525-537. doi: 10.3934/matersci.2016.2.525


  • 1. Yin XM, Li CC, Zhang M, et al. (2009) SnO2 monolayer porous hollow spheres as a gas sensor. Nanotechnology 20: 455503–455509.
  • 2. Sambhaji SB, Gauri AT, Arif VS, et al. (2012) Structural analysis and dye-sensitized solar cell application of electrodeposited tin oxide nanoparticles. Mater Lett 79: 29–31.
  • 3. Cannella G, Principato F, Foti M, et al. (2011) Carrier transport mechanism in the SnO2:F/p-type a-Si:H heterojunction. J Appl Phys 110: 024502–24510.
  • 4. Zhang SG, Yin SF, Wei YD, et al. (2012) Novel MgO–SnO2 Solid Superbase as a High-Efficiency Catalyst for One-Pot Solvent-Free Synthesis of Polyfunctionalized 4H-pyran Derivatives. Catal Lett 142: 608–614.
  • 5. Fitzgerald CB, Venkatesan M, Dorneles LS, et al. (2006) Magnetism in dilute magnetic oxide thin films based on SnO2. Phys Rev B 74: 115307–115316.
  • 6. Chi J, Ge H, Wang J, et al. (2011) Synthesis and electrical and magnetic properties of Mn-doped SnO2 nanowires. J Appl Phys 110: 083907–083911.
  • 7. Srivastava SK, Lejay P, Hadj-Azzem A, et al. (2014) Non-magnetic Impurity Induced Magnetism in Li-Doped SnO2 Nanoparticles. J Supercond Nov Magn 27: 487–492.
  • 8. Srivastava SK, Lejay P, Barbara B, et al. (2010) Possible room-temperature ferromagnetism in K-doped SnO2: X-ray diffraction and high-resolution transmission electron microscopy study. Phys Rev B 82: 193203–193207.
  • 9. Datta S, Das B (1990) Electronic analog of the electro‐optic modulator. Appl Phys Lett 56: 665–667.    
  • 10. Monsma DJ, Lodder JC, Popma TJA, et al. (1995) Perpendicular Hot Electron Spin-Valve Effect in a New Magnetic Field Sensor: The Spin-Valve Transistor. Phys Rev Lett 74: 5260–5263.    
  • 11. Long R, English NJ (2009) Density functional theory description of the mechanism of ferromagnetism in nitrogen-doped SnO2. Phys Lett A 374: 319–322.    
  • 12. Zhang Y, Liu H, Qin H, et al. (2011) Ferromagnetism induced by intrinsic defects and nitrogen substitution in SnO2 nanotube. Appl Surface Sci 257: 10206–10210.
  • 13. Sarkar A, Sanyal D, Nath P, et al. (2015) Defect driven ferromagnetism in SnO2: a combined study using density functional theory and positron annihilation spectroscopy. RCS Adv 5: 1148–1152.
  • 14. Wang H, Yan Y, Li K, et al. (2010) Role of intrinsic defects in ferromagnetism of SnO2: First-principles calculations. Phys Status Solid B 247: 444–448.
  • 15. Caskey CM, Seabold JA, Stevanovic V, et al. (2015) Semiconducting properties of spinel tin nitride and other IV3N4 polymorphs. J Mater Chem C 3: 1389–1396.
  • 16. Ching WY, Rulis P (2006) Ab-initio calculations of the electronic structure and spectroscopic properties of spinel γ-Sn3N4. Phys Rev B 73: 45202.    
  • 17. Pan SS , Li GH , Wang LB, et al. (2009) Atomic nitrogen doping and p-type conduction in SnO2. Appl Phys Lett 95: 222112–222114.
  • 18. Kumar RR, Rao KN, Phani AR (2013) Self catalytic growth of SnO2 branched nanowires by thermal evaporation. Mater Lett 92: 243–246.
  • 19. Qin L, Xu J, Dong X, et al. (2008) The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors. Nanotechnology 19: 185705–185712.
  • 20. Herrera M, Maestre D, Cremades A, et al. (2013) Growth and Characterization of Mn Doped SnO2 Nanowires, Nanobelts, and Microplates. J Phys Chem C 117: 8997–9003.
  • 21. Maestre D, Cremades A, Piqueras J (2005) Growth and luminescence properties of micro- and nanotubes in sintered tin oxide. J Appl Phys 97: 44316–43319.    
  • 22. Luo S, Fan J, Liu W, et al. (2006) Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology 17: 1695–1699.
  • 23. Kim S, Lim T, Ju S (2011) Fabrication of reliable semiconductor nanowires by controlling crystalline structure. Nanotechnology 22: 305704–305709.
  • 24. Shajira PS, Junaid BM, Nair BB, et al. (2014) Energy band structure investigation of blue and green light emitting Mg doped SnO2 nanostructures synthesized by combustion method. J Lumin 145: 425–429.
  • 25. Liu LZ, Xu JQ, Wu XL, et al. (2013) Optical identification of oxygen vacancy types in SnO2 nanocrystals. Appl Phys Lett 102: 031916–031919.
  • 26. Zhou XT, Heigl F, Murphy MW, et al. (2006) Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states. Appl Phys Lett 89: 213109–213111.


This article has been cited by

  • 1. N. M. A. Hadia, M. F. Hasaneen, Mohamed Asran Hassan, S. H. Mohamed, Effect of the carrier gas on morphological, optical and electrical properties of SnO2 nanostructures prepared by vapor transport, Journal of Materials Science: Materials in Electronics, 2017, 10.1007/s10854-017-8360-x

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Manuel Herrera, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved