-
AIMS Materials Science, 2016, 3(1): 35-50. doi: 10.3934/matersci.2016.1.35.
Research article Topical Section
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Electrical and optical properties of hybrid polymer solar cells incorporating Au and CuO nanoparticles
Materials Science and Engineering Department, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53201, USA
Received: , Accepted: , Published:
Topical Section: The solar cell
Keywords: Au nanoparticles; CuO nanoparticles; plasmonic effect; UV-visible spectroscopy; PSCs
Citation: Aruna P. Wanninayake, Shengyi Li, Benjamin C. Church, Nidal Abu-Zahra. Electrical and optical properties of hybrid polymer solar cells incorporating Au and CuO nanoparticles. AIMS Materials Science, 2016, 3(1): 35-50. doi: 10.3934/matersci.2016.1.35
References:
- 1. Abu-Zahra N, Algazzar M (2013) Effect of crystallinity on the performance of P3HT/PC70BM/n-dodecylthiol polymer solar cells. J Sol Energy Eng 136(2):021023.
- 2. Manceau M, Angmo D, Jorgensen M, et al. (2011) ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules. Org Electron 12, 566–574.
-
3. Michael CH, Ali D (2014) Efficient generation of model bulk heterojunction morphologies for organic photovoltaic device modeling. Appl Phys Rev 2: 014008.
- 4. Choulis SA, Kim Y, Nelson J, et al. (2004) High ambipolar and balanced carrier mobility in regioregular poly (3-hexy thiophene). Appl Phys Rev 85: 3890–3892.
-
5. Ma W, Yang C, Gong X, et al. (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15: 1617–1622.
- 6. Liao SH, Jhuo HJ, Yeh PN, et al. (2014) Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Sci Rep, 4: 6813: 4–10.
-
7. Raja R, Liu WS, Hsiow CY, et al. (2015) Terthiophene-C60 dyads as donor/acceptor compatibilizers for developing highly stable P3HT/ PCBM bulk heterojunction solar cells. J Mater Chem A 3: 14401–14408.
-
8. Jung K, Song HJ, Lee G, et al. (2014) Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano 8: 2590-2601.
- 9. Deibel C, Dyakonov V (2010) Polymer–fullerene bulk heterojunction solar cells. Rep Prog Phys 3: 9.
-
10. Gunes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107: 1324–1338.
-
11. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9: 205–213.
-
12. Schuller JA, Barnard ES, Cai W, et al. (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9: 193–204.
- 13. Mahmoud AY, Izquierdo R, Truong VV (2014) Gold nanorods incorporated cathode for better performance of polymer solar cells. J Nanomater (2014): 464160.
-
14. Brown M, Suteewong T, Kumar R, et al. (2011) Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett: 11: 438–445.
-
15. Kim SS, Na SI, Jo J, et al. (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93: 073307.
-
16. Chou SY, Ding W (2013) Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Opt Express 21: 60–76.
-
17. Chen FC, Wu JL, Lee CL, et al. (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution- processable metal nanoparticles. Appl Phys Lett 95: 013305.
-
18. Xie F, Choy W, Wang C, et al. (2011) Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers. Appl Phys Lett 99: 153304.
-
19. Wang DH, Kim DY, Choi KW, et al. (2011) Enhancement of Donor–Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles. Angew Chem Int Ed 50: 5519–5523.
-
20. Xie F, Choy W, Zhu X, et al. (2011) Improving polymer solar cell performances by manipulating the self-organization of polymer. Appl Phys Lett 98: 243302.
- 21. Baek SW, Noh J, Lee CH, et al. (2013) Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method. Nat Sci Rep 3: 1726.
-
22. Chen X, Zuo L, Fu W, et al. (2013) Insight into the efficiency enhancement of polymer solar cells by incorporating gold nanoparticles. Sol Energy Mat Sol 111: 1–8.
-
23. Choy W, Sha W, Li X, et al. (2014) Multi-Physical Properties of Plasmonic Organic Solar Cells. Prog Electromag Res 146: 25–46.
-
24. Choy W (2014) The emerging multiple metal nanostructures for enhancing the light trapping of thin film organic photovoltaic cells. Chem Commun 50: 11984–11993.
-
25. Gan Q, Bartoli FJ, Kafafi ZH (2013) Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier. Adv Mater 25: 2385–2396.
-
26. Wanninayake AP, Gunashekar S, Li S, et al. (2015) CuO Nanoparticles Based Bulk Heterojunction Solar Cells: Investigations on Morphology and Performance. J Sol Energy Eng 137: 031016.
- 27. Wright M, Uddin A (2012) Organic-inorganic hybrid solar cells: A comparative review. Sol Energ Mat Sol C 107: 87–111.
-
28. Bundgaard E, Shaheen SE, Krebs FC, et al. (2007) Bulk heterojunctions based on a low band gap copolymer of thiophene and benzothiadiazole. Sol Energ Mat Sol C 91: 1631–1637.
-
29. Fung D, Qiao LF, Choy W, et al. (2011) Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer. J Mater Chem 21: 16349–16356.
-
30. Hsu MH, Yu P, Huang JH, et al. (2011) Balanced carrier transport in organic solar cells employing embedded indium-tinoxide nanoelectrodes. Appl Phys Lett 98: 073308-1.
-
31. Li G, Shrotriya V, Yao Y, et al. (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly„3-hexylthiophen. J Appl Phys 98: 043704.
-
32. Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87: 203113.
-
33. Krebs FC, Thomann Y, Thomann R, et al. (2008) A simple nanostructured polymer/ZnO hybrid solar cell-preparation and operation in air. Nanotechnology 19: 424013.
-
34. Wanninayake A, Gunashekar S, Li S, et al. (2015) Performance enhancement of polymer solar cells using copper oxide nanoparticles. Semicond Sci Technol 30: 064004.
- 35. Nguyen BP, Kim T, Park CR (2014) Nanocomposite-based bulk heterojunction hybrid solar cells. J Nanomater (2014): 243041.
-
36. Eisenhawer B, Sensfuss S, Sivakov V, et al. (2011) Increasing the efficiency of polymer solar cells by silicon nanowires. Nanotechnology 22: 315401.
This article has been cited by:
- 1. Raid A Ismail, Ryam S Abdul-Hamed, Laser ablation of Au–CuO core–shell nanocomposite in water for optoelectronic devices, Materials Research Express, 2017, 4, 12, 125020, 10.1088/2053-1591/aa9e14
Reader Comments
Copyright Info: 2016, Nidal Abu-Zahra, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *