
AIMS Materials Science, 2016, 3(1): 245259. doi: 10.3934/matersci.2016.1.245
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Decision maker based on atomic switches
1 WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, 11 Namiki, Tsukuba, Ibaraki 305–0044, Japan
2 Department of Applied Physics, Waseda University, 341 Ookubo, Shinjukuku, Tokyo 1698555, Japan
3 EarthLife Science Institute, Tokyo Institute of Technology, Tokyo 152–8550, Japan
4 PRESTO JST, Japan
Received: , Accepted: , Published:
Special Issues: Nanomaterials for Cognitive Technology
References
1. Castro LN (2007) Fundamentals of natural computing: an overview. Physics of Life Reviews 4: 136.
2. Kari L, Rozenberg G (2008) The many facets of natural computing. Communications of the ACM 51: 7283.
3. Rozenberg G, Back T, Kok J (2012) Handbook of natural computing, SpringerVerlag.
4. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization in simulated annealing. Science 220: 671680.
5. Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization problems. Biological Cybernetics 52: 141152.
6. Brady RM (1985) Optimization strategies gleaned from biological evolution. Nature 317: 804806.
7. Adelman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266: 10211024.
8. Terabe K, Hasegawa T, Nakayama T, et al. (2001) Quantum point contact switch realized by solid electrochemical reaction. RIKEN Review 37: 78.
9. Terabe K, Hasegawa T, Nakayama T, et al. (2005) Quantized conductance atomic switch. Nature 433: 4750.
10. Kim SJ, Aono M, Nameda E (2015) Efficient decisionmaking by volumeconserving physical object. New J Phys 17: 083023.
11. Robbins H (1952) Some aspects of the sequential design of experiments. Bull Amer Math Soc 58: 527536.
12. Thompson W (1933) On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25: 285294.
13. Gittins J, Jones D (1974) Dynamic allocation index for the sequential design of experiments, In: Gans, J. Progress in Statistics North Holland, 241266.
14. Gittins J (1979) Bandit processes and dynamic allocation indices. J R Stat Soc B 41: 148177.
15. Agrawal R (1995) Sample mean based index policies with O(log n) regret for the multiarmed bandit problem. Adv Appl Prob 27: 10541078.
16. Auer P, CesaBianchi N, Fischer P (2002) Finitetime analysis of the multiarmed bandit problem. Machine Learning 47: 235256.
17. Lai L, Jiang H, Poor HV (2008) Medium access in cognitive radio networks: a competitive multiarmed bandit framework. Proc. of IEEE 42nd Asilomar Conference on Signals, System and Computers, 98102.
18. Lai L, Gamal HE, Jiang H, et al. (2011) Cognitive medium access: exploration, exploitation, and competition. IEEE Trans. on Mobile Computing 10: 239253.
19. Agarwal D, Chen BC, Elango P (2009) Explore/exploit schemes for web content optimization. Proc of ICDM2009, http://dx.doi.org/10.1109/ICDM.2009.52.
20. Kocsis L, Szepesv´ari C. (2006) Bandit based montecarlo planning, In: Carbonell, J. G. et al., 17th European Conference on Machine Learning, Lecture Notes in Artificial Intelligence 4212, Springer, 282293.
21. Gelly S, Wang Y, Munos R, et al. (2006) Modification of UCT with patterns in MonteCarlo Go. RR6062INRIA, 119.
22. Demis EC, Aguilera R, Sillin HO, et al. (2015) Atomic switch networks  nanoarchitectonic design of a complex system for natural computing. Nanotechnology 26: 204003.
23. Avizienis AV, Sillin HO, MartinOlmos C, et al. (2012) Neuromorphic atomic switch networks. PLoS ONE 7: e42772.
24. Sutton R, Barto A (1998) Reinforcement Learning: An Introduction, MIT Press.
25. Kim SJ, Aono M, Hara M (2010) Tugofwar model for multiarmed bandit problem, In: Calude C. et al. Unconventional Computation, Lecture Notes in Computer Science 6079, Springer, 6980.
26. Kim SJ, Aono M, Hara M (2010) Tugofwar model for the twobandit problem: Nonlocallycorrelated parallel exploration via resource conservation. BioSystems 101: 2936.
27. Kim SJ, Naruse M, Aono M, et al. (2013) Decision maker based on nanoscale photoexcitation transfer. Sci Rep 3: 2370.
28. Naruse M, NomuraW, Aono M, et al. (2014) Decision making based on optical excitation transfer via nearfield interactions between quantum dots. J Appl Phys 116: 154303.
29. Naruse M, Berthel M, Drezet A, et al. (2015) Single photon decision maker Sci Rep 5: 13253.
30. Tsuruoka T, Hasegawa T, Terabe K, et al. (2012) Conductance quantization and synaptic behavior in a Ta2O5based atomic switch. Nanotechnology 23: 435705.
31. Roughgarden T (2005) Selfish routing and the price of anarchy, MIT Press, Cambridge.
32. Nisan N, Roughgarden T, Tardos E, et al. (2007) Algorithmic Game Theory, Cambridge Univ. Press.
33. Kim SJ, Aono M (2015) Decision maker using coupled incompressiblefluid cylinders. Special issue of Advances in Science, Technology and Environmentology B11: 4145, Available from: http://arxiv.org/abs/1502.03890.
34. Kim SJ, Naruse M, Aono M (2015) Harnessing natural fluctuations: analogue computer for efficient sociallymaximal decisionmaking. eprint arXiv, Available from: http://arxiv.org/abs/1504.03451.
35. Vermorel J, Mohri M (2005) Multiarmed bandit algorithms and empirical evaluation, In: Gama J., et al. 16th European Conference on Machine Learning. Lecture Notes in Artificial Intelligence 3720, Springer, 437448.
Copyright Info: © 2016, SongJu Kim, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)