Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Modified Becke-Johnson exchange potential: improved modeling of lead halides for solar cell applications

Department of Physics, California State University, Los Angeles, California, U.S.A

Topical Section: The solar cell

We report first-principles calculations, within density functional theory, on the lead halide compounds PbCl2, PbBr2, and CH3NH3PbBr3−xClx, taking into account spin-orbit coupling. We show that, when the modified Becke-Johnson exchange potential is used with a suitable choice of defining parameters, excellent agreement between calculations and experiment is obtained. The computational model is then used to study the effect of replacing the methylammonium cation in CH3NH3PbI3 and CH3NH3PbBr3 with either N2H5+or N2H3+, which have slightly smaller ionic radii than methylammonium. We predict that a considerable downshift in the values of the band gaps occurs with this replacement. The resulting compounds would extend optical absorption down to the near-infrared region, creating excellent light harvesters for solar cells.
  Figure/Table
  Supplementary
  Article Metrics

Keywords DFT; lead halides; mBJ; perovskites; photovoltaics; solar cells; spin-orbit

Citation: Radi A. Jishi. Modified Becke-Johnson exchange potential: improved modeling of lead halides for solar cell applications. AIMS Materials Science, 2016, 3(1): 149-159. doi: 10.3934/matersci.2016.1.149

References

  • 1. Kojima A, Teshima K, Shirai Y, et al. (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131: 6050–6051.    
  • 2. Etgar L, Gau P, Xue Z, et al. (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134: 17396–17399.    
  • 3. Ball J, Lee M, Hey A, et al. (2013) Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Env Sci 6: 1739–1743.    
  • 4. Heo H, Im S, Noh J, et al. (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7: 486–491.    
  • 5. Kim H-S, Lee J-W, Yantara N, et al. (2013) High efficiency solid-state sensitized solar cell based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 13: 2412–2417.
  • 6. Bi D, Yang L, Boschloo G, et al. (2013) Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett 4: 1532–1536.
  • 7. Cai B, Xing Y, Yang Z, et al. (2013) High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Env Sci 6: 1480–1485.    
  • 8. Eperon G, Burlakov V, Docampo P, et al. (2014) Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater 24: 151–157.    
  • 9. Laban W, Etgar L. (2014) Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Env Sci 6: 3249–3253.
  • 10. Stranks S, Eperon G, Grancini G, et al. (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342: 341–344.    
  • 11. Lee M, Teuscher J, Miyasaka T, et al. (2012) Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 338: 643–647.    
  • 12. Noh J, Im S, Heo J, et al. (2013) Chemical management for colorful, efficient, and stable inorganicorganic hybrid nanostructured solar cells. Nano Lett 13: 1764–1769.
  • 13. Burschka J, Pellet N, Moon S, et al. (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499: 316–319.    
  • 14. Liu M, Johnston M, Snaith H (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501: 395–398.    
  • 15. Mosconi E, Amat A, Nazeeruddin M, et al. (2013) First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J Phys Chem C 117: 13902–13913.    
  • 16. Wang Y, Gould T, Dobson J, et al. (2014) Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. Phys Chem Chem Phys 16: 1424–1429.    
  • 17. Umari P, Mosconi E, De Angelis, F (2014) Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci Rep 4: Article number: 4467.
  • 18. Even J, Pedesseau L, Jancu J, et al. (2013) Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett 4: 2999–3005.    
  • 19. Even J, Pedesseau L, Dupertuis M, et al. (2012) Electronic model for self-assembled hybrid organic/perovskite semiconductors: reverse band edge electronic states ordering and spin-orbit coupling. Phys Rev B 86: 205301.    
  • 20. Even J, Pedesseau L, Katan C (2014) Comments on “density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3.” Phys Chem Chem Phys 16:8697-8698    
  • 21. Feng J, Xiao B (2014) Correction to “crystal structures, optical properties, and effective mass tensors of CH3NH3PbI3 (X=I and Br) phases predicted from HSE06.” J Phys Chem Lett 5: 1719-1720.    
  • 22. Brivio F, Butler K, Walsh A (2014) Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys Rev B 89: 155024
  • 23. Filippetti A, Mattoni A (2014) Hybrid perovskites for photovoltaics: insights from first principles. Phys Rev B 89: 125203
  • 24. Jishi R, Ta O, Sharif A (2014) Modeling of lead halide compounds for photovoltaic applications. J Phys Chem C 118: 28344–28349.    
  • 25. Motta C, El-Mellouhi F, Kais S, et al. (2015) Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat Commun 6: 7026.    
  • 26. Baikie T, Fang Y, Kadro J, et al. (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1: 5628–5641.
  • 27. Comin R, Walters G, Thibau E, et al. (2015) Structural, optical, and electronic studies of widebandgap lead halide perovskites. J Mater Chem C 3: 8839–8843.    
  • 28. Buin A, Comin R, Xu J, et al. (2015) Halide-dependent electronic structure of organolead perovskite materials. Chem Mater 27: 4405–4412.
  • 29. Pang S, Hu H, Zhang J, et al. (2014) NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem Mater 26: 1485–1491.    
  • 30. Stoumpos C, Malliakas C, Kanatzidis M (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52: 9019–9038.
  • 31. Stoumpos C, Kanatzidis G (2015) The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc Chem Res 48: 2791–2802.
  • 32. Eperon G, Stranks S, Menelaou C, et al. (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7: 982–988.    
  • 33. Koh T, Fu K, Fang Y, et al. (2014) Formamidinium-containing metal halide: an alternative material for near-IR absorption perovskite solar cells. J Phys Chem C 118: 16458–16462.    
  • 34. Jeon N, Noh J, Yang W, et al. (2015) Compositional engineering of perovskite materials for highperformance solar cells. Nature 517: 476–480.    
  • 35. Tan Z, Moghaddam R, Lai M, et al. (2014) Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech 9: 687–692.    
  • 36. Kim Y.-H, Cho H, Heo J, et al. (2015) Multicolored organic/inorganic hybrid perovskite lightemitting diodes. Adv Mater 27: 1248–1254.    
  • 37. Amat A, Mosconi E, Ronca E, et al. (2014) Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett 14: 3608–3616.    
  • 38. Kieslich G, Sun S, Cheetham A (2015) An extended tolerance factor approach for organic-inorganic perovskites. Chem Sci 6: 3430–3433.    
  • 39. Mashiyama H, Kurihara Y, Azetsu T (1998) Disordered cubic perovskite structure of CH3NH3PbX3(X = Cl, Br, I). J Korean Phys Soc 32: S156-S158.
  • 40. Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5652.
  • 41. Frisch M, Trucks G, Schlegel H, et al. (2009) Gaussian 09, Gaussian, Inc: Willingford, CT.
  • 42. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140: A1133–A1138.
  • 43. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77: 3865–3868.
  • 44. Bechstedt F, Fuchs F, Kresse G (2009) Ab-initio theory of semiconductor band structures: new developments and progress. Phys Status Solidi B 246: 1877–1892.    
  • 45. Becke A, Johnson E (2006) A simple effective potential for exchange. J Chem Phys 124: 221101.
  • 46. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102: 226401.
  • 47. Becke A, Roussel M (1989) Exchange holes in inhomogeneous systems: a coordinate-space model. Phys Rev A 39: 3761–3767.    
  • 48. Blaha P, Schwarz K, Madsen G, et al. (2001) WIEN2K: an augmented plane wave + local orbitals program for calculating crystal properties.
  • 49. Monkhorst H, Pack J (1976) Special points for Brillouin-zone integrations. Phys Rev B 13: 5188–5192.    
  • 50. Perdew J, Ruzsinzky A, Csonka G, et al. (2008) Restoring the density-gradient expansion for exchange in solids. Phys Rev Lett 100: 136406.    
  • 51. Wyckoff R (1963) Crystal structures, 2nd ed. (Wiley, New York) Vol. 1.
  • 52. Plekhanov V (2004) Lead halides: electronic properties and applications. Prog Mater Sci 49: 787–886.    
  • 53. Zaldo C, Sol´ e J, Di ´ eguez E, et al. (1985) Optical spectroscopy of PbCl2 particles embedded in NaCl host matrix. J Chem Phys 83: 6197–6200.    
  • 54. Plekhanov V (1973) Optical constants of lead halides. Phys Stat Sol B 57: K55–K59.    
  • 55. Iwanaga M, Watanabe M, Hayashi T (2000) Charge separation of excitons and the radiative recombination process in PbBr2 crystals. Phys Rev B 62: 10766–10773.    
  • 56. Matus M, Arduengo A, Dixon D (2006) The heats of formation of diazene, hydrazine, N2H3+, N2H5+, N2H, and N2H3 and the methyl derivatives CH3NNH, CH3NNCH3, and CH3HNNHCH3. J Phys Chem A 110: 10116–10121.    

 

This article has been cited by

  • 1. T. Malsawmtluanga, Benjamin Vanlalruata R. K. Thapa, Investigation of half-metallicity of GeKMg and SnKMg by Using mBJ potential method, Journal of Physics: Conference Series, 2016, 765, 012018, 10.1088/1742-6596/765/1/012018
  • 2. Lung-Chien Chen, Zong-Liang Tseng, Jun-Kai Huang, Cheng-Chiang Chen, Sheng Chang, Fullerene-Based Electron Transport Layers for Semi-Transparent MAPbBr3 Perovskite Films in Planar Perovskite Solar Cells, Coatings, 2016, 6, 4, 53, 10.3390/coatings6040053
  • 3. Markus Becker, Thorsten Klüner, Michael Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors, Dalton Trans., 2017, 10.1039/C6DT04796C
  • 4. Arpita Varadwaj, Pradeep R. Varadwaj, Koichi Yamashita, Halogen in materials design: Fluoroammonium lead triiodide (FNH3PbI3) perovskite as a newly discovered dynamical bandgap semiconductor in 3D, International Journal of Quantum Chemistry, 2018, e25621, 10.1002/qua.25621
  • 5. Priyanka Samanta, Yitang Wang, Shadi Fuladi, Jinjing Zou, Ye Li, Le Shen, Christopher Weber, Fatemeh Khalili-Araghi, Molecular determination of claudin-15 organization and channel selectivity, The Journal of General Physiology, 2018, jgp.201711868, 10.1085/jgp.201711868
  • 6. Pradeep R. Varadwaj, Arpita Varadwaj, Helder M. Marques, Koichi Yamashita, Halogen in materials design: Chloroammonium lead triiodide perovskite (ClNH3PbI3) a dynamical bandgap semiconductor in 3D for photovoltaics, Journal of Computational Chemistry, 2018, 39, 23, 1902, 10.1002/jcc.25366
  • 7. Ala'a O. El-Ballouli, Osman M. Bakr, Omar F. Mohammed, Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells, Chemistry of Materials, 2019, 10.1021/acs.chemmater.9b01268
  • 8. Patrik Ščajev, Džiugas Litvinas, Gediminas Kreiza, Sandra Stanionytė, Tadas Malinauskas, Roland Tomašiūnas, Saulius Juršėnas, Highly efficient nanocrystalline CsxMA1−xPbBrx perovskite layers for white light generation, Nanotechnology, 2019, 30, 34, 345702, 10.1088/1361-6528/ab1a69
  • 9. Patrik Scajev, Džiugas Litvinas, Vaiva Soriūtė, Gediminas Kreiza, Sandra Stanionytė, Saulius Jursenas, Crystal Structure Ideality Impact to Bimolecular, Auger and Diffusion Coefficients in Mixed Cation CsxMA1-xPbBr3 and CsxFA1-xPbBr3 Perovskites, The Journal of Physical Chemistry C, 2019, 10.1021/acs.jpcc.9b05824
  • 10. Fabien Tran, Jan Doumont, Leila Kalantari, Ahmad W. Huran, Miguel A. L. Marques, Peter Blaha, Semilocal exchange-correlation potentials for solid-state calculations: Current status and future directions, Journal of Applied Physics, 2019, 126, 11, 110902, 10.1063/1.5118863

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Radi A. Jishi, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved