-
AIMS Materials Science, 2016, 3(1): 149-159. doi: 10.3934/matersci.2016.1.149.
Research article Topical Section
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Modified Becke-Johnson exchange potential: improved modeling of lead halides for solar cell applications
Department of Physics, California State University, Los Angeles, California, U.S.A
Received: , Accepted: , Published:
Topical Section: The solar cell
Keywords: DFT; lead halides; mBJ; perovskites; photovoltaics; solar cells; spin-orbit
Citation: Radi A. Jishi. Modified Becke-Johnson exchange potential: improved modeling of lead halides for solar cell applications. AIMS Materials Science, 2016, 3(1): 149-159. doi: 10.3934/matersci.2016.1.149
References:
-
1. Kojima A, Teshima K, Shirai Y, et al. (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131: 6050–6051.
-
2. Etgar L, Gau P, Xue Z, et al. (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134: 17396–17399.
-
3. Ball J, Lee M, Hey A, et al. (2013) Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Env Sci 6: 1739–1743.
-
4. Heo H, Im S, Noh J, et al. (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7: 486–491.
- 5. Kim H-S, Lee J-W, Yantara N, et al. (2013) High efficiency solid-state sensitized solar cell based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 13: 2412–2417.
- 6. Bi D, Yang L, Boschloo G, et al. (2013) Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett 4: 1532–1536.
-
7. Cai B, Xing Y, Yang Z, et al. (2013) High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Env Sci 6: 1480–1485.
-
8. Eperon G, Burlakov V, Docampo P, et al. (2014) Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater 24: 151–157.
- 9. Laban W, Etgar L. (2014) Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Env Sci 6: 3249–3253.
-
10. Stranks S, Eperon G, Grancini G, et al. (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342: 341–344.
-
11. Lee M, Teuscher J, Miyasaka T, et al. (2012) Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 338: 643–647.
- 12. Noh J, Im S, Heo J, et al. (2013) Chemical management for colorful, efficient, and stable inorganicorganic hybrid nanostructured solar cells. Nano Lett 13: 1764–1769.
-
13. Burschka J, Pellet N, Moon S, et al. (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499: 316–319.
-
14. Liu M, Johnston M, Snaith H (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501: 395–398.
-
15. Mosconi E, Amat A, Nazeeruddin M, et al. (2013) First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J Phys Chem C 117: 13902–13913.
-
16. Wang Y, Gould T, Dobson J, et al. (2014) Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. Phys Chem Chem Phys 16: 1424–1429.
- 17. Umari P, Mosconi E, De Angelis, F (2014) Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci Rep 4: Article number: 4467.
-
18. Even J, Pedesseau L, Jancu J, et al. (2013) Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett 4: 2999–3005.
-
19. Even J, Pedesseau L, Dupertuis M, et al. (2012) Electronic model for self-assembled hybrid organic/perovskite semiconductors: reverse band edge electronic states ordering and spin-orbit coupling. Phys Rev B 86: 205301.
-
20. Even J, Pedesseau L, Katan C (2014) Comments on “density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3.” Phys Chem Chem Phys 16:8697-8698
-
21. Feng J, Xiao B (2014) Correction to “crystal structures, optical properties, and effective mass tensors of CH3NH3PbI3 (X=I and Br) phases predicted from HSE06.” J Phys Chem Lett 5: 1719-1720.
- 22. Brivio F, Butler K, Walsh A (2014) Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys Rev B 89: 155024
- 23. Filippetti A, Mattoni A (2014) Hybrid perovskites for photovoltaics: insights from first principles. Phys Rev B 89: 125203
-
24. Jishi R, Ta O, Sharif A (2014) Modeling of lead halide compounds for photovoltaic applications. J Phys Chem C 118: 28344–28349.
-
25. Motta C, El-Mellouhi F, Kais S, et al. (2015) Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat Commun 6: 7026.
- 26. Baikie T, Fang Y, Kadro J, et al. (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1: 5628–5641.
-
27. Comin R, Walters G, Thibau E, et al. (2015) Structural, optical, and electronic studies of widebandgap lead halide perovskites. J Mater Chem C 3: 8839–8843.
- 28. Buin A, Comin R, Xu J, et al. (2015) Halide-dependent electronic structure of organolead perovskite materials. Chem Mater 27: 4405–4412.
-
29. Pang S, Hu H, Zhang J, et al. (2014) NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem Mater 26: 1485–1491.
- 30. Stoumpos C, Malliakas C, Kanatzidis M (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52: 9019–9038.
- 31. Stoumpos C, Kanatzidis G (2015) The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc Chem Res 48: 2791–2802.
-
32. Eperon G, Stranks S, Menelaou C, et al. (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7: 982–988.
-
33. Koh T, Fu K, Fang Y, et al. (2014) Formamidinium-containing metal halide: an alternative material for near-IR absorption perovskite solar cells. J Phys Chem C 118: 16458–16462.
-
34. Jeon N, Noh J, Yang W, et al. (2015) Compositional engineering of perovskite materials for highperformance solar cells. Nature 517: 476–480.
-
35. Tan Z, Moghaddam R, Lai M, et al. (2014) Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech 9: 687–692.
-
36. Kim Y.-H, Cho H, Heo J, et al. (2015) Multicolored organic/inorganic hybrid perovskite lightemitting diodes. Adv Mater 27: 1248–1254.
-
37. Amat A, Mosconi E, Ronca E, et al. (2014) Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett 14: 3608–3616.
-
38. Kieslich G, Sun S, Cheetham A (2015) An extended tolerance factor approach for organic-inorganic perovskites. Chem Sci 6: 3430–3433.
- 39. Mashiyama H, Kurihara Y, Azetsu T (1998) Disordered cubic perovskite structure of CH3NH3PbX3(X = Cl, Br, I). J Korean Phys Soc 32: S156-S158.
- 40. Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5652.
- 41. Frisch M, Trucks G, Schlegel H, et al. (2009) Gaussian 09, Gaussian, Inc: Willingford, CT.
- 42. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140: A1133–A1138.
- 43. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77: 3865–3868.
-
44. Bechstedt F, Fuchs F, Kresse G (2009) Ab-initio theory of semiconductor band structures: new developments and progress. Phys Status Solidi B 246: 1877–1892.
- 45. Becke A, Johnson E (2006) A simple effective potential for exchange. J Chem Phys 124: 221101.
- 46. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102: 226401.
-
47. Becke A, Roussel M (1989) Exchange holes in inhomogeneous systems: a coordinate-space model. Phys Rev A 39: 3761–3767.
- 48. Blaha P, Schwarz K, Madsen G, et al. (2001) WIEN2K: an augmented plane wave + local orbitals program for calculating crystal properties.
-
49. Monkhorst H, Pack J (1976) Special points for Brillouin-zone integrations. Phys Rev B 13: 5188–5192.
-
50. Perdew J, Ruzsinzky A, Csonka G, et al. (2008) Restoring the density-gradient expansion for exchange in solids. Phys Rev Lett 100: 136406.
- 51. Wyckoff R (1963) Crystal structures, 2nd ed. (Wiley, New York) Vol. 1.
-
52. Plekhanov V (2004) Lead halides: electronic properties and applications. Prog Mater Sci 49: 787–886.
-
53. Zaldo C, Sol´ e J, Di ´ eguez E, et al. (1985) Optical spectroscopy of PbCl2 particles embedded in NaCl host matrix. J Chem Phys 83: 6197–6200.
-
54. Plekhanov V (1973) Optical constants of lead halides. Phys Stat Sol B 57: K55–K59.
-
55. Iwanaga M, Watanabe M, Hayashi T (2000) Charge separation of excitons and the radiative recombination process in PbBr2 crystals. Phys Rev B 62: 10766–10773.
-
56. Matus M, Arduengo A, Dixon D (2006) The heats of formation of diazene, hydrazine, N2H3+, N2H5+, N2H, and N2H3 and the methyl derivatives CH3NNH, CH3NNCH3, and CH3HNNHCH3. J Phys Chem A 110: 10116–10121.
This article has been cited by:
- 1. T. Malsawmtluanga, Benjamin Vanlalruata R. K. Thapa, Investigation of half-metallicity of GeKMg and SnKMg by Using mBJ potential method, Journal of Physics: Conference Series, 2016, 765, 012018, 10.1088/1742-6596/765/1/012018
- 2. Lung-Chien Chen, Zong-Liang Tseng, Jun-Kai Huang, Cheng-Chiang Chen, Sheng Chang, Fullerene-Based Electron Transport Layers for Semi-Transparent MAPbBr3 Perovskite Films in Planar Perovskite Solar Cells, Coatings, 2016, 6, 4, 53, 10.3390/coatings6040053
- 3. Markus Becker, Thorsten Klüner, Michael Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors, Dalton Trans., 2017, 10.1039/C6DT04796C
- 4. Arpita Varadwaj, Pradeep R. Varadwaj, Koichi Yamashita, Halogen in materials design: Fluoroammonium lead triiodide (FNH3PbI3) perovskite as a newly discovered dynamical bandgap semiconductor in 3D, International Journal of Quantum Chemistry, 2018, e25621, 10.1002/qua.25621
- 5. Priyanka Samanta, Yitang Wang, Shadi Fuladi, Jinjing Zou, Ye Li, Le Shen, Christopher Weber, Fatemeh Khalili-Araghi, Molecular determination of claudin-15 organization and channel selectivity, The Journal of General Physiology, 2018, jgp.201711868, 10.1085/jgp.201711868
- 6. Pradeep R. Varadwaj, Arpita Varadwaj, Helder M. Marques, Koichi Yamashita, Halogen in materials design: Chloroammonium lead triiodide perovskite (ClNH3PbI3) a dynamical bandgap semiconductor in 3D for photovoltaics, Journal of Computational Chemistry, 2018, 39, 23, 1902, 10.1002/jcc.25366
- 7. Ala'a O. El-Ballouli, Osman M. Bakr, Omar F. Mohammed, Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells, Chemistry of Materials, 2019, 10.1021/acs.chemmater.9b01268
- 8. Patrik Ščajev, Džiugas Litvinas, Gediminas Kreiza, Sandra Stanionytė, Tadas Malinauskas, Roland Tomašiūnas, Saulius Juršėnas, Highly efficient nanocrystalline CsxMA1−xPbBrx perovskite layers for white light generation, Nanotechnology, 2019, 30, 34, 345702, 10.1088/1361-6528/ab1a69
- 9. Patrik Scajev, Džiugas Litvinas, Vaiva Soriūtė, Gediminas Kreiza, Sandra Stanionytė, Saulius Jursenas, Crystal Structure Ideality Impact to Bimolecular, Auger and Diffusion Coefficients in Mixed Cation CsxMA1-xPbBr3 and CsxFA1-xPbBr3 Perovskites, The Journal of Physical Chemistry C, 2019, 10.1021/acs.jpcc.9b05824
- 10. Fabien Tran, Jan Doumont, Leila Kalantari, Ahmad W. Huran, Miguel A. L. Marques, Peter Blaha, Semilocal exchange-correlation potentials for solid-state calculations: Current status and future directions, Journal of Applied Physics, 2019, 126, 11, 110902, 10.1063/1.5118863
Reader Comments
Copyright Info: 2016, Radi A. Jishi, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *